QuantLib: a free/open-source library for quantitative finance
fully annotated source code - version 1.34
|
Bates model engines based on Fourier transform. More...
#include <batesengine.hpp>
Public Member Functions | |
BatesEngine (const ext::shared_ptr< BatesModel > &model, Size integrationOrder=144) | |
BatesEngine (const ext::shared_ptr< BatesModel > &model, Real relTolerance, Size maxEvaluations) | |
Public Member Functions inherited from AnalyticHestonEngine | |
AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, Real relTolerance, Size maxEvaluations) | |
AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, Size integrationOrder=144) | |
AnalyticHestonEngine (const ext::shared_ptr< HestonModel > &model, ComplexLogFormula cpxLog, const Integration &itg, Real andersenPiterbargEpsilon=1e-25, Real alpha=-0.5) | |
void | calculate () const override |
std::complex< Real > | chF (const std::complex< Real > &z, Time t) const |
std::complex< Real > | lnChF (const std::complex< Real > &z, Time t) const |
Size | numberOfEvaluations () const |
Real | priceVanillaPayoff (const ext::shared_ptr< PlainVanillaPayoff > &payoff, const Date &maturity) const |
Real | priceVanillaPayoff (const ext::shared_ptr< PlainVanillaPayoff > &payoff, Time maturity) const |
Public Member Functions inherited from GenericModelEngine< HestonModel, VanillaOption::arguments, VanillaOption::results > | |
GenericModelEngine (Handle< HestonModel > model=Handle< HestonModel >()) | |
GenericModelEngine (const ext::shared_ptr< HestonModel > &model) | |
Public Member Functions inherited from GenericEngine< ArgumentsType, ResultsType > | |
PricingEngine::arguments * | getArguments () const override |
const PricingEngine::results * | getResults () const override |
void | reset () override |
void | update () override |
Public Member Functions inherited from PricingEngine | |
~PricingEngine () override=default | |
virtual arguments * | getArguments () const =0 |
virtual const results * | getResults () const =0 |
virtual void | reset ()=0 |
virtual void | calculate () const =0 |
Public Member Functions inherited from Observable | |
Observable () | |
Observable (const Observable &) | |
Observable & | operator= (const Observable &) |
Observable (Observable &&)=delete | |
Observable & | operator= (Observable &&)=delete |
virtual | ~Observable ()=default |
void | notifyObservers () |
Public Member Functions inherited from Observer | |
Observer ()=default | |
Observer (const Observer &) | |
Observer & | operator= (const Observer &) |
virtual | ~Observer () |
std::pair< iterator, bool > | registerWith (const ext::shared_ptr< Observable > &) |
void | registerWithObservables (const ext::shared_ptr< Observer > &) |
Size | unregisterWith (const ext::shared_ptr< Observable > &) |
void | unregisterWithAll () |
virtual void | update ()=0 |
virtual void | deepUpdate () |
Protected Member Functions | |
std::complex< Real > | addOnTerm (Real phi, Time t, Size j) const override |
virtual std::complex< Real > | addOnTerm (Real phi, Time t, Size j) const |
Bates model engines based on Fourier transform.
this classes price european options under the following processes
\[ \begin{array}{rcl} dS(t, S) &=& (r-d-\lambda m) S dt +\sqrt{v} S dW_1 + (e^J - 1) S dN \\ dv(t, S) &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\ dW_1 dW_2 &=& \rho dt \end{array} \]
N is a Poisson process with the intensity \( \lambda \). When a jump occurs the magnitude J has the probability density function \( \omega(J) \).
1.1 Log-Normal Jump Diffusion: BatesEngine
Logarithm of the jump size J is normally distributed
\[ \omega(J) = \frac{1}{\sqrt{2\pi \delta^2}} \exp\left[-\frac{(J-\nu)^2}{2\delta^2}\right] \]
1.2 Double-Exponential Jump Diffusion: BatesDoubleExpEngine
The jump size has an asymmetric double exponential distribution
\[ \begin{array}{rcl} \omega(J)&=& p\frac{1}{\eta_u}e^{-\frac{1}{\eta_u}J} 1_{J>0} + q\frac{1}{\eta_d}e^{\frac{1}{\eta_d}J} 1_{J<0} \\ p + q &=& 1 \end{array} \]
\[ \begin{array}{rcl} dS(t, S) &=& (r-d-\lambda m) S dt +\sqrt{v} S dW_1 + (e^J - 1) S dN \\ dv(t, S) &=& \kappa (\theta - v) dt + \sigma \sqrt{v} dW_2 \\ d\lambda(t) &=& \kappa_\lambda(\theta_\lambda-\lambda) dt \\ dW_1 dW_2 &=& \rho dt \end{array} \]
2.1 Log-Normal Jump Diffusion with Deterministic Jump Intensity BatesDetJumpEngine
2.2 Double-Exponential Jump Diffusion with Deterministic Jump Intensity BatesDoubleExpDetJumpEngine
References:
D. Bates, Jumps and stochastic volatility: exchange rate processes implicit in Deutsche mark options, Review of Financial Sudies 9, 69-107.
A. Sepp, Pricing European-Style Options under Jump Diffusion Processes with Stochastic Volatility: Applications of Fourier Transform (http://math.ut.ee/~spartak/papers/stochjumpvols.pdf)
Definition at line 106 of file batesengine.hpp.
|
explicit |
Definition at line 26 of file batesengine.cpp.
BatesEngine | ( | const ext::shared_ptr< BatesModel > & | model, |
Real | relTolerance, | ||
Size | maxEvaluations | ||
) |
Definition at line 32 of file batesengine.cpp.
Reimplemented from AnalyticHestonEngine.
Reimplemented in BatesDetJumpEngine.
Definition at line 39 of file batesengine.cpp.