Logo
Fully annotated reference manual - version 1.8.12
Loading...
Searching...
No Matches
simmconfigurationisdav2_2.cpp
Go to the documentation of this file.
1/*
2 Copyright (C) 2019 Quaternion Risk Management Ltd.
3 All rights reserved.
4
5 This file is part of ORE, a free-software/open-source library
6 for transparent pricing and risk analysis - http://opensourcerisk.org
7
8 ORE is free software: you can redistribute it and/or modify it
9 under the terms of the Modified BSD License. You should have received a
10 copy of the license along with this program.
11 The license is also available online at <http://opensourcerisk.org>
12
13 This program is distributed on the basis that it will form a useful
14 contribution to risk analytics and model standardisation, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the license for more details.
17*/
18
21
22#include <ql/math/matrix.hpp>
23
24#include <boost/make_shared.hpp>
25#include <boost/algorithm/string/predicate.hpp>
26
27
28using QuantLib::InterestRateIndex;
29using QuantLib::Matrix;
30using QuantLib::Real;
31using std::string;
32using std::vector;
33
34namespace ore {
35namespace analytics {
36
38
39QuantLib::Size SimmConfiguration_ISDA_V2_2::group(const string& qualifier,
40 const std::map<QuantLib::Size, std::set<string>>& categories) const {
41 QuantLib::Size result = 0;
42 for (const auto& kv : categories) {
43 if (kv.second.empty()) {
44 result = kv.first;
45 } else {
46 if (kv.second.count(qualifier) > 0) {
47 // Found qualifier in category so return it
48 return kv.first;
49 }
50 }
51 }
52
53 // If we get here, result should hold category with empty set
54 return result;
55}
56
57QuantLib::Real SimmConfiguration_ISDA_V2_2::weight(const RiskType& rt, boost::optional<string> qualifier,
58 boost::optional<std::string> label_1,
59 const std::string& calculationCurrency) const {
60
61 if (rt == RiskType::FX) {
62 QL_REQUIRE(calculationCurrency != "", "no calculation currency provided weight");
63 QL_REQUIRE(qualifier, "need a qualifier to return a risk weight for the risk type FX");
64
65 QuantLib::Size g1 = group(calculationCurrency, ccyGroups_);
66 QuantLib::Size g2 = group(*qualifier, ccyGroups_);
67 return rwFX_[g1][g2];
68 }
69
70 return SimmConfigurationBase::weight(rt, qualifier, label_1);
71}
72
73QuantLib::Real SimmConfiguration_ISDA_V2_2::correlation(const RiskType& firstRt, const string& firstQualifier,
74 const string& firstLabel_1, const string& firstLabel_2,
75 const RiskType& secondRt, const string& secondQualifier,
76 const string& secondLabel_1, const string& secondLabel_2,
77 const std::string& calculationCurrency) const {
78
79 if (firstRt == RiskType::FX && secondRt == RiskType::FX) {
80 QL_REQUIRE(calculationCurrency != "", "no calculation currency provided corr");
81 QuantLib::Size g = group(calculationCurrency, ccyGroups_);
82 QuantLib::Size g1 = group(firstQualifier, ccyGroups_);
83 QuantLib::Size g2 = group(secondQualifier, ccyGroups_);
84 if (g == 0) {
85 return fxRegVolCorrelation_[g1][g2];
86 } else if (g == 1) {
87 return fxHighVolCorrelation_[g1][g2];
88 } else {
89 QL_FAIL("FX Volatility group " << g << " not recognized");
90 }
91 }
92
93 return SimmConfigurationBase::correlation(firstRt, firstQualifier, firstLabel_1, firstLabel_2, secondRt,
94 secondQualifier, secondLabel_1, secondLabel_2);
95}
96
97SimmConfiguration_ISDA_V2_2::SimmConfiguration_ISDA_V2_2(const QuantLib::ext::shared_ptr<SimmBucketMapper>& simmBucketMapper,
98 const QuantLib::Size& mporDays, const std::string& name,
99 const std::string version)
100 : SimmConfigurationBase(simmBucketMapper, name, version, mporDays) {
101
102 // The differences in methodology for 1 Day horizon is described in
103 // Standard Initial Margin Model: Technical Paper, ISDA SIMM Governance Forum, Version 10:
104 // Section I - Calibration with one-day horizon
105 QL_REQUIRE(mporDays_ == 10 || mporDays_ == 1, "SIMM only supports MPOR 10-day or 1-day");
106
107 // Set up the correct concentration threshold getter
108 if (mporDays == 10) {
109 simmConcentration_ = QuantLib::ext::make_shared<SimmConcentration_ISDA_V2_2>(simmBucketMapper_);
110 } else {
111 // SIMM:Technical Paper, Section I.4: "The Concentration Risk feature is disabled"
112 simmConcentration_ = QuantLib::ext::make_shared<SimmConcentrationBase>();
113 }
114
115 // clang-format off
116
117 // Set up the members for this configuration
118 // Explanations of all these members are given in the hpp file
119
120 mapBuckets_ = {
121 { RiskType::IRCurve, { "1", "2", "3" } },
122 { RiskType::CreditQ, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "Residual" } },
123 { RiskType::CreditVol, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "Residual" } },
124 { RiskType::CreditNonQ, { "1", "2", "Residual" } },
125 { RiskType::CreditVolNonQ, { "1", "2", "Residual" } },
126 { RiskType::Equity, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "Residual" } },
127 { RiskType::EquityVol, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "Residual" } },
128 { RiskType::Commodity, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17" } },
129 { RiskType::CommodityVol, { "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "16", "17" } }
130 };
131
132 mapLabels_1_ = {
133 { RiskType::IRCurve, { "2w", "1m", "3m", "6m", "1y", "2y", "3y", "5y", "10y", "15y", "20y", "30y" } },
134 { RiskType::CreditQ, { "1y", "2y", "3y", "5y", "10y" } },
135 { RiskType::CreditNonQ, { "1y", "2y", "3y", "5y", "10y" } },
136 { RiskType::IRVol, { "2w", "1m", "3m", "6m", "1y", "2y", "3y", "5y", "10y", "15y", "20y", "30y" } },
137 { RiskType::InflationVol, { "2w", "1m", "3m", "6m", "1y", "2y", "3y", "5y", "10y", "15y", "20y", "30y" } },
138 { RiskType::CreditVol, { "1y", "2y", "3y", "5y", "10y" } },
139 { RiskType::CreditVolNonQ, { "1y", "2y", "3y", "5y", "10y" } },
140 { RiskType::EquityVol, { "2w", "1m", "3m", "6m", "1y", "2y", "3y", "5y", "10y", "15y", "20y", "30y" } },
141 { RiskType::CommodityVol, { "2w", "1m", "3m", "6m", "1y", "2y", "3y", "5y", "10y", "15y", "20y", "30y" } },
142 { RiskType::FXVol, { "2w", "1m", "3m", "6m", "1y", "2y", "3y", "5y", "10y", "15y", "20y", "30y" } }
143 };
144
145 mapLabels_2_ = {
146 { RiskType::IRCurve, { "OIS", "Libor1m", "Libor3m", "Libor6m", "Libor12m", "Prime", "Municipal" } },
147 { RiskType::CreditQ, { "", "Sec" } }
148 };
149
150 // Populate CCY groups that are used for FX correlations and risk weights
151 // The groups consists of High Vol Currencies (currently just BRL) & regular vol currencies (all others)
152 ccyGroups_ = {
153 { 1, {"BRL"} },
154 { 0, { } },
155 };
156
157 vector<Real> temp;
158
159 if (mporDays_ == 10) {
160 // Risk weights
161 temp = {
162 7.57, 10.28,
163 10.28, 10.28
164 };
165 rwFX_ = Matrix(2, 2, temp.begin(), temp.end());
166
167 rwRiskType_ = {
168 { RiskType::Inflation, 47 },
169 { RiskType::XCcyBasis, 20 },
170 { RiskType::IRVol, 0.16 },
171 { RiskType::InflationVol, 0.16 },
172 { RiskType::CreditVol, 0.39 },
173 { RiskType::CreditVolNonQ, 0.39 },
174 { RiskType::CommodityVol, 0.35 },
175 { RiskType::FXVol, 0.30 },
176 { RiskType::BaseCorr, 7.0 }
177 };
178
179 rwBucket_ = {
180 {RiskType::CreditQ,
181 {{{"1", "", ""}, 72.0},
182 {{"2", "", ""}, 97.0},
183 {{"3", "", ""}, 75.0},
184 {{"4", "", ""}, 53.0},
185 {{"5", "", ""}, 45.0},
186 {{"6", "", ""}, 53.0},
187 {{"7", "", ""}, 165.0},
188 {{"8", "", ""}, 250.0},
189 {{"9", "", ""}, 191.0},
190 {{"10", "", ""}, 179.0},
191 {{"11", "", ""}, 132.0},
192 {{"12", "", ""}, 129.0},
193 {{"Residual", "", ""}, 250.0}}},
194 {RiskType::CreditNonQ, {{{"1", "", ""}, 100.0}, {{"2", "", ""}, 1600.0}, {{"Residual", "", ""}, 1600.0}}},
195 {RiskType::Equity,
196 {{{"1", "", ""}, 22.0},
197 {{"2", "", ""}, 26.0},
198 {{"3", "", ""}, 29.0},
199 {{"4", "", ""}, 26.0},
200 {{"5", "", ""}, 19.0},
201 {{"6", "", ""}, 21.0},
202 {{"7", "", ""}, 25.0},
203 {{"8", "", ""}, 24.0},
204 {{"9", "", ""}, 30.0},
205 {{"10", "", ""}, 29.0},
206 {{"11", "", ""}, 17.0},
207 {{"12", "", ""}, 17.0},
208 {{"Residual", "", ""}, 30.0}}},
209 {RiskType::Commodity,
210 {{{"1", "", ""}, 19.0},
211 {{"2", "", ""}, 20.0},
212 {{"3", "", ""}, 16.0},
213 {{"4", "", ""}, 19.0},
214 {{"5", "", ""}, 24.0},
215 {{"6", "", ""}, 24.0},
216 {{"7", "", ""}, 28.0},
217 {{"8", "", ""}, 42.0},
218 {{"9", "", ""}, 28.0},
219 {{"10", "", ""}, 53.0},
220 {{"11", "", ""}, 20.0},
221 {{"12", "", ""}, 19.0},
222 {{"13", "", ""}, 15.0},
223 {{"14", "", ""}, 16.0},
224 {{"15", "", ""}, 11.0},
225 {{"16", "", ""}, 53.0},
226 {{"17", "", ""}, 16.0}}},
227 {RiskType::EquityVol,
228 {{{"1", "", ""}, 0.26},
229 {{"2", "", ""}, 0.26},
230 {{"3", "", ""}, 0.26},
231 {{"4", "", ""}, 0.26},
232 {{"5", "", ""}, 0.26},
233 {{"6", "", ""}, 0.26},
234 {{"7", "", ""}, 0.26},
235 {{"8", "", ""}, 0.26},
236 {{"9", "", ""}, 0.26},
237 {{"10", "", ""}, 0.26},
238 {{"11", "", ""}, 0.26},
239 {{"12", "", ""}, 0.62},
240 {{"Residual", "", ""}, 0.26}}}
241 };
242
243 rwLabel_1_ = {
244 {RiskType::IRCurve,
245 {{{"1", "2w", ""}, 116.0},
246 {{"1", "1m", ""}, 106.0},
247 {{"1", "3m", ""}, 94.0},
248 {{"1", "6m", ""}, 71.0},
249 {{"1", "1y", ""}, 59.0},
250 {{"1", "2y", ""}, 52.0},
251 {{"1", "3y", ""}, 49.0},
252 {{"1", "5y", ""}, 51.0},
253 {{"1", "10y", ""}, 51.0},
254 {{"1", "15y", ""}, 51.0},
255 {{"1", "20y", ""}, 54.0},
256 {{"1", "30y", ""}, 62.0},
257 {{"2", "2w", ""}, 14.0},
258 {{"2", "1m", ""}, 20.0},
259 {{"2", "3m", ""}, 10.0},
260 {{"2", "6m", ""}, 10.0},
261 {{"2", "1y", ""}, 14.0},
262 {{"2", "2y", ""}, 20.0},
263 {{"2", "3y", ""}, 22.0},
264 {{"2", "5y", ""}, 20.0},
265 {{"2", "10y", ""}, 20.0},
266 {{"2", "15y", ""}, 20.0},
267 {{"2", "20y", ""}, 22.0},
268 {{"2", "30y", ""}, 27.0},
269 {{"3", "2w", ""}, 85.0},
270 {{"3", "1m", ""}, 80.0},
271 {{"3", "3m", ""}, 79.0},
272 {{"3", "6m", ""}, 86.0},
273 {{"3", "1y", ""}, 97.0},
274 {{"3", "2y", ""}, 102.0},
275 {{"3", "3y", ""}, 104.0},
276 {{"3", "5y", ""}, 102.0},
277 {{"3", "10y", ""}, 103.0},
278 {{"3", "15y", ""}, 99.0},
279 {{"3", "20y", ""}, 99.0},
280 {{"3", "30y", ""}, 100.0}}
281 }
282 };
283
284 // Historical volatility ratios
285 historicalVolatilityRatios_[RiskType::EquityVol] = 0.61;
286 historicalVolatilityRatios_[RiskType::CommodityVol] = 0.78;
287 historicalVolatilityRatios_[RiskType::FXVol] = 0.65;
288 hvr_ir_ = 0.53;
289 // Curvature weights
291 { RiskType::IRVol, { 0.5,
292 0.5 * 14.0 / (365.0 / 12.0),
293 0.5 * 14.0 / (3.0 * 365.0 / 12.0),
294 0.5 * 14.0 / (6.0 * 365.0 / 12.0),
295 0.5 * 14.0 / 365.0,
296 0.5 * 14.0 / (2.0 * 365.0),
297 0.5 * 14.0 / (3.0 * 365.0),
298 0.5 * 14.0 / (5.0 * 365.0),
299 0.5 * 14.0 / (10.0 * 365.0),
300 0.5 * 14.0 / (15.0 * 365.0),
301 0.5 * 14.0 / (20.0 * 365.0),
302 0.5 * 14.0 / (30.0 * 365.0) }
303 },
304 { RiskType::CreditVol, { 0.5 * 14.0 / 365.0,
305 0.5 * 14.0 / (2.0 * 365.0),
306 0.5 * 14.0 / (3.0 * 365.0),
307 0.5 * 14.0 / (5.0 * 365.0),
308 0.5 * 14.0 / (10.0 * 365.0) }
309 }
310 };
311 curvatureWeights_[RiskType::InflationVol] = curvatureWeights_[RiskType::IRVol];
312 curvatureWeights_[RiskType::EquityVol] = curvatureWeights_[RiskType::IRVol];
313 curvatureWeights_[RiskType::CommodityVol] = curvatureWeights_[RiskType::IRVol];
314 curvatureWeights_[RiskType::FXVol] = curvatureWeights_[RiskType::IRVol];
315 curvatureWeights_[RiskType::CreditVolNonQ] = curvatureWeights_[RiskType::CreditVol];
316
317 } else {
318 // SIMM:Technical Paper, Section I.1: "All delta and vega risk weights should be replaced with the values for
319 // one-day calibration given in the Calibration Results document."
320
321 // Risk weights
322 temp = {
323 1.85, 3.04,
324 3.04, 3.04
325 };
326 rwFX_ = Matrix(2, 2, temp.begin(), temp.end());
327
328 rwRiskType_ = {
329 { RiskType::Inflation, 9.4 },
330 { RiskType::XCcyBasis, 5.3 },
331 { RiskType::IRVol, 0.04 },
332 { RiskType::InflationVol, 0.04 },
333 { RiskType::CreditVol, 0.084 },
334 { RiskType::CreditVolNonQ, 0.084 },
335 { RiskType::CommodityVol, 0.09 },
336 { RiskType::FXVol, 0.078 },
337 { RiskType::BaseCorr, 1.5 }
338 };
339 rwBucket_ = {
340 {RiskType::CreditQ,
341 {{{"1", "", ""}, 16.0},
342 {{"2", "", ""}, 21.0},
343 {{"3", "", ""}, 15.0},
344 {{"4", "", ""}, 11.0},
345 {{"5", "", ""}, 10.0},
346 {{"6", "", ""}, 12.0},
347 {{"7", "", ""}, 37.0},
348 {{"8", "", ""}, 42.0},
349 {{"9", "", ""}, 31.0},
350 {{"10", "", ""}, 33.0},
351 {{"11", "", ""}, 29.0},
352 {{"12", "", ""}, 27.0},
353 {{"Residual", "", ""}, 42.0}}},
354 {RiskType::CreditNonQ, {{{"1", "", ""}, 20}, {{"2", "", ""}, 320}, {{"Residual", "", ""}, 320.0}}},
355 {RiskType::Equity,
356 {{{"1", "", ""}, 7.6},
357 {{"2", "", ""}, 8.4},
358 {{"3", "", ""}, 9.7},
359 {{"4", "", ""}, 8.4},
360 {{"5", "", ""}, 6.8},
361 {{"6", "", ""}, 7.4},
362 {{"7", "", ""}, 8.7},
363 {{"8", "", ""}, 8.7},
364 {{"9", "", ""}, 9.9},
365 {{"10", "", ""}, 9.6},
366 {{"11", "", ""}, 7.0},
367 {{"12", "", ""}, 7.0},
368 {{"Residual", "", ""}, 9.9}}},
369 {RiskType::Commodity,
370 {{{"1", "", ""}, 5.6},
371 {{"2", "", ""}, 8.2},
372 {{"3", "", ""}, 5.8},
373 {{"4", "", ""}, 6.4},
374 {{"5", "", ""}, 10.0},
375 {{"6", "", ""}, 9.1},
376 {{"7", "", ""}, 8.0},
377 {{"8", "", ""}, 12.3},
378 {{"9", "", ""}, 6.9},
379 {{"10", "", ""}, 12.4},
380 {{"11", "", ""}, 6.4},
381 {{"12", "", ""}, 5.7},
382 {{"13", "", ""}, 5.0},
383 {{"14", "", ""}, 4.8},
384 {{"15", "", ""}, 3.9},
385 {{"16", "", ""}, 12.4},
386 {{"17", "", ""}, 4.7}}},
387 {RiskType::EquityVol,
388 {{{"1", "", ""}, 0.066},
389 {{"2", "", ""}, 0.066},
390 {{"3", "", ""}, 0.066},
391 {{"4", "", ""}, 0.066},
392 {{"5", "", ""}, 0.066},
393 {{"6", "", ""}, 0.066},
394 {{"7", "", ""}, 0.066},
395 {{"8", "", ""}, 0.066},
396 {{"9", "", ""}, 0.066},
397 {{"10", "", ""}, 0.066},
398 {{"11", "", ""}, 0.066},
399 {{"12", "", ""}, 0.21},
400 {{"Residual", "", ""}, 0.066}}}
401 };
402 rwLabel_1_ = {
403 {RiskType::IRCurve,
404 {{{"1", "2w", ""}, 18.0},
405 {{"1", "1m", ""}, 16.0},
406 {{"1", "3m", ""}, 11.0},
407 {{"1", "6m", ""}, 11.0},
408 {{"1", "1y", ""}, 13.0},
409 {{"1", "2y", ""}, 14.0},
410 {{"1", "3y", ""}, 14.0},
411 {{"1", "5y", ""}, 16.0},
412 {{"1", "10y", ""}, 16.0},
413 {{"1", "15y", ""},16.0 },
414 {{"1", "20y", ""}, 16.0},
415 {{"1", "30y", ""}, 16.0},
416 {{"2", "2w", ""}, 3.5},
417 {{"2", "1m", ""}, 3.4},
418 {{"2", "3m", ""}, 1.7},
419 {{"2", "6m", ""}, 1.5},
420 {{"2", "1y", ""}, 3.2},
421 {{"2", "2y", ""}, 4.4},
422 {{"2", "3y", ""}, 5.1},
423 {{"2", "5y", ""}, 6.6},
424 {{"2", "10y", ""}, 7.3},
425 {{"2", "15y", ""}, 7.1},
426 {{"2", "20y", ""}, 7.8},
427 {{"2", "30y", ""}, 8.6},
428 {{"3", "2w", ""}, 41.0},
429 {{"3", "1m", ""}, 24.0},
430 {{"3", "3m", ""}, 17.0},
431 {{"3", "6m", ""}, 17.0},
432 {{"3", "1y", ""}, 20.0},
433 {{"3", "2y", ""}, 23.0},
434 {{"3", "3y", ""}, 24.0},
435 {{"3", "5y", ""}, 27.0},
436 {{"3", "10y", ""}, 30.0},
437 {{"3", "15y", ""}, 28.0},
438 {{"3", "20y", ""}, 29.0},
439 {{"3", "30y", ""}, 29.0}}
440 }
441 };
442
443 // Historical volatility ratios
444 historicalVolatilityRatios_[RiskType::EquityVol] = 0.55;
445 historicalVolatilityRatios_[RiskType::CommodityVol] = 0.69;
446 historicalVolatilityRatios_[RiskType::FXVol] = 0.82;
447 hvr_ir_ = 0.59;
448 // clang-format on
449
450 // Curvature weights
451 //SIMM:Technical Paper, Section I.3, this 10-day formula for curvature weights is modified
453 { RiskType::IRVol, { 0.5 / 10.0,
454 0.5 * 1.40 / (365.0 / 12.0),
455 0.5 * 1.40 / (3.0 * 365.0 / 12.0),
456 0.5 * 1.40 / (6.0 * 365.0 / 12.0),
457 0.5 * 1.40 / 365.0,
458 0.5 * 1.40 / (2.0 * 365.0),
459 0.5 * 1.40 / (3.0 * 365.0),
460 0.5 * 1.40 / (5.0 * 365.0),
461 0.5 * 1.40 / (10.0 * 365.0),
462 0.5 * 1.40 / (15.0 * 365.0),
463 0.5 * 1.40 / (20.0 * 365.0),
464 0.5 * 1.40 / (30.0 * 365.0) }
465 },
466 { RiskType::CreditVol, { 0.5 * 1.40 / 365.0,
467 0.5 * 1.40 / (2.0 * 365.0),
468 0.5 * 1.40 / (3.0 * 365.0),
469 0.5 * 1.40 / (5.0 * 365.0),
470 0.5 * 1.40 / (10.0 * 365.0) }
471 }
472 };
473 curvatureWeights_[RiskType::InflationVol] = curvatureWeights_[RiskType::IRVol];
474 curvatureWeights_[RiskType::EquityVol] = curvatureWeights_[RiskType::IRVol];
475 curvatureWeights_[RiskType::CommodityVol] = curvatureWeights_[RiskType::IRVol];
476 curvatureWeights_[RiskType::FXVol] = curvatureWeights_[RiskType::IRVol];
477 curvatureWeights_[RiskType::CreditVolNonQ] = curvatureWeights_[RiskType::CreditVol];
478
479 }
480
481
482 // Valid risk types
484 RiskType::Commodity,
485 RiskType::CommodityVol,
486 RiskType::CreditNonQ,
487 RiskType::CreditQ,
488 RiskType::CreditVol,
489 RiskType::CreditVolNonQ,
490 RiskType::Equity,
491 RiskType::EquityVol,
492 RiskType::FX,
493 RiskType::FXVol,
494 RiskType::Inflation,
495 RiskType::IRCurve,
496 RiskType::IRVol,
497 RiskType::InflationVol,
498 RiskType::BaseCorr,
499 RiskType::XCcyBasis,
500 RiskType::ProductClassMultiplier,
501 RiskType::AddOnNotionalFactor,
502 RiskType::PV,
503 RiskType::Notional,
504 RiskType::AddOnFixedAmount
505 };
506
507 // Risk class correlation matrix
509 {{"", "InterestRate", "CreditQualifying"}, 0.27},
510 {{"", "InterestRate", "CreditNonQualifying"}, 0.26},
511 {{"", "InterestRate", "Equity"}, 0.29},
512 {{"", "InterestRate", "Commodity"}, 0.31},
513 {{"", "InterestRate", "FX"}, 0.14},
514 {{"", "CreditQualifying", "InterestRate"}, 0.27},
515 {{"", "CreditQualifying", "CreditNonQualifying"}, 0.19},
516 {{"", "CreditQualifying", "Equity"}, 0.63},
517 {{"", "CreditQualifying", "Commodity"}, 0.42},
518 {{"", "CreditQualifying", "FX"}, 0.25},
519 {{"", "CreditNonQualifying", "InterestRate"}, 0.26},
520 {{"", "CreditNonQualifying", "CreditQualifying"}, 0.19},
521 {{"", "CreditNonQualifying", "Equity"}, 0.19},
522 {{"", "CreditNonQualifying", "Commodity"}, 0.2},
523 {{"", "CreditNonQualifying", "FX"}, 0.14},
524 {{"", "Equity", "InterestRate"}, 0.29},
525 {{"", "Equity", "CreditQualifying"}, 0.63},
526 {{"", "Equity", "CreditNonQualifying"}, 0.19},
527 {{"", "Equity", "Commodity"}, 0.43},
528 {{"", "Equity", "FX"}, 0.25},
529 {{"", "Commodity", "InterestRate"}, 0.31},
530 {{"", "Commodity", "CreditQualifying"}, 0.42},
531 {{"", "Commodity", "CreditNonQualifying"}, 0.2},
532 {{"", "Commodity", "Equity"}, 0.43},
533 {{"", "Commodity", "FX"}, 0.3},
534 {{"", "FX", "InterestRate"}, 0.14},
535 {{"", "FX", "CreditQualifying"}, 0.25},
536 {{"", "FX", "CreditNonQualifying"}, 0.14},
537 {{"", "FX", "Equity"}, 0.25},
538 {{"", "FX", "Commodity"}, 0.3}
539 };
540
541 // FX correlations
542 temp = {
543 0.500, 0.368,
544 0.368, 0.500
545 };
546 fxRegVolCorrelation_ = Matrix(2, 2, temp.begin(), temp.end());
547
548 temp = {
549 0.729, 0.500,
550 0.500, 0.500
551 };
552 fxHighVolCorrelation_ = Matrix(2, 2, temp.begin(), temp.end());
553
554 // Interest rate tenor correlations (i.e. Label1 level correlations)
555 intraBucketCorrelation_[RiskType::IRCurve] = {
556 {{"", "2w", "1m"}, 0.69},
557 {{"", "2w", "3m"}, 0.64},
558 {{"", "2w", "6m"}, 0.55},
559 {{"", "2w", "1y"}, 0.34},
560 {{"", "2w", "2y"}, 0.21},
561 {{"", "2w", "3y"}, 0.16},
562 {{"", "2w", "5y"}, 0.11},
563 {{"", "2w", "10y"}, 0.06},
564 {{"", "2w", "15y"}, 0.01},
565 {{"", "2w", "20y"}, 0.0},
566 {{"", "2w", "30y"}, -0.02},
567 {{"", "1m", "2w"}, 0.69},
568 {{"", "1m", "3m"}, 0.79},
569 {{"", "1m", "6m"}, 0.65},
570 {{"", "1m", "1y"}, 0.5},
571 {{"", "1m", "2y"}, 0.39},
572 {{"", "1m", "3y"}, 0.33},
573 {{"", "1m", "5y"}, 0.26},
574 {{"", "1m", "10y"}, 0.2},
575 {{"", "1m", "15y"}, 0.14},
576 {{"", "1m", "20y"}, 0.11},
577 {{"", "1m", "30y"}, 0.09},
578 {{"", "3m", "2w"}, 0.64},
579 {{"", "3m", "1m"}, 0.79},
580 {{"", "3m", "6m"}, 0.85},
581 {{"", "3m", "1y"}, 0.67},
582 {{"", "3m", "2y"}, 0.53},
583 {{"", "3m", "3y"}, 0.46},
584 {{"", "3m", "5y"}, 0.37},
585 {{"", "3m", "10y"}, 0.29},
586 {{"", "3m", "15y"}, 0.22},
587 {{"", "3m", "20y"}, 0.19},
588 {{"", "3m", "30y"}, 0.16},
589 {{"", "6m", "2w"}, 0.55},
590 {{"", "6m", "1m"}, 0.65},
591 {{"", "6m", "3m"}, 0.85},
592 {{"", "6m", "1y"}, 0.85},
593 {{"", "6m", "2y"}, 0.72},
594 {{"", "6m", "3y"}, 0.65},
595 {{"", "6m", "5y"}, 0.56},
596 {{"", "6m", "10y"}, 0.46},
597 {{"", "6m", "15y"}, 0.38},
598 {{"", "6m", "20y"}, 0.34},
599 {{"", "6m", "30y"}, 0.3},
600 {{"", "1y", "2w"}, 0.34},
601 {{"", "1y", "1m"}, 0.5},
602 {{"", "1y", "3m"}, 0.67},
603 {{"", "1y", "6m"}, 0.85},
604 {{"", "1y", "2y"}, 0.93},
605 {{"", "1y", "3y"}, 0.88},
606 {{"", "1y", "5y"}, 0.78},
607 {{"", "1y", "10y"}, 0.66},
608 {{"", "1y", "15y"}, 0.6},
609 {{"", "1y", "20y"}, 0.56},
610 {{"", "1y", "30y"}, 0.52},
611 {{"", "2y", "2w"}, 0.21},
612 {{"", "2y", "1m"}, 0.39},
613 {{"", "2y", "3m"}, 0.53},
614 {{"", "2y", "6m"}, 0.72},
615 {{"", "2y", "1y"}, 0.93},
616 {{"", "2y", "3y"}, 0.98},
617 {{"", "2y", "5y"}, 0.91},
618 {{"", "2y", "10y"}, 0.81},
619 {{"", "2y", "15y"}, 0.75},
620 {{"", "2y", "20y"}, 0.72},
621 {{"", "2y", "30y"}, 0.68},
622 {{"", "3y", "2w"}, 0.16},
623 {{"", "3y", "1m"}, 0.33},
624 {{"", "3y", "3m"}, 0.46},
625 {{"", "3y", "6m"}, 0.65},
626 {{"", "3y", "1y"}, 0.88},
627 {{"", "3y", "2y"}, 0.98},
628 {{"", "3y", "5y"}, 0.96},
629 {{"", "3y", "10y"}, 0.87},
630 {{"", "3y", "15y"}, 0.83},
631 {{"", "3y", "20y"}, 0.8},
632 {{"", "3y", "30y"}, 0.76},
633 {{"", "5y", "2w"}, 0.11},
634 {{"", "5y", "1m"}, 0.26},
635 {{"", "5y", "3m"}, 0.37},
636 {{"", "5y", "6m"}, 0.56},
637 {{"", "5y", "1y"}, 0.78},
638 {{"", "5y", "2y"}, 0.91},
639 {{"", "5y", "3y"}, 0.96},
640 {{"", "5y", "10y"}, 0.95},
641 {{"", "5y", "15y"}, 0.92},
642 {{"", "5y", "20y"}, 0.89},
643 {{"", "5y", "30y"}, 0.86},
644 {{"", "10y", "2w"}, 0.06},
645 {{"", "10y", "1m"}, 0.2},
646 {{"", "10y", "3m"}, 0.29},
647 {{"", "10y", "6m"}, 0.46},
648 {{"", "10y", "1y"}, 0.66},
649 {{"", "10y", "2y"}, 0.81},
650 {{"", "10y", "3y"}, 0.87},
651 {{"", "10y", "5y"}, 0.95},
652 {{"", "10y", "15y"}, 0.98},
653 {{"", "10y", "20y"}, 0.97},
654 {{"", "10y", "30y"}, 0.95},
655 {{"", "15y", "2w"}, 0.01},
656 {{"", "15y", "1m"}, 0.14},
657 {{"", "15y", "3m"}, 0.22},
658 {{"", "15y", "6m"}, 0.38},
659 {{"", "15y", "1y"}, 0.6},
660 {{"", "15y", "2y"}, 0.75},
661 {{"", "15y", "3y"}, 0.83},
662 {{"", "15y", "5y"}, 0.92},
663 {{"", "15y", "10y"}, 0.98},
664 {{"", "15y", "20y"}, 0.99},
665 {{"", "15y", "30y"}, 0.98},
666 {{"", "20y", "2w"}, 0.0},
667 {{"", "20y", "1m"}, 0.11},
668 {{"", "20y", "3m"}, 0.19},
669 {{"", "20y", "6m"}, 0.34},
670 {{"", "20y", "1y"}, 0.56},
671 {{"", "20y", "2y"}, 0.72},
672 {{"", "20y", "3y"}, 0.8},
673 {{"", "20y", "5y"}, 0.89},
674 {{"", "20y", "10y"}, 0.97},
675 {{"", "20y", "15y"}, 0.99},
676 {{"", "20y", "30y"}, 0.99},
677 {{"", "30y", "2w"}, -0.02},
678 {{"", "30y", "1m"}, 0.09},
679 {{"", "30y", "3m"}, 0.16},
680 {{"", "30y", "6m"}, 0.3},
681 {{"", "30y", "1y"}, 0.52},
682 {{"", "30y", "2y"}, 0.68},
683 {{"", "30y", "3y"}, 0.76},
684 {{"", "30y", "5y"}, 0.86},
685 {{"", "30y", "10y"}, 0.95},
686 {{"", "30y", "15y"}, 0.98},
687 {{"", "30y", "20y"}, 0.99}
688 };
689
690 // CreditQ inter-bucket correlations
691 interBucketCorrelation_[RiskType::CreditQ] = {
692 {{"", "1", "2"}, 0.43},
693 {{"", "1", "3"}, 0.42},
694 {{"", "1", "4"}, 0.41},
695 {{"", "1", "5"}, 0.43},
696 {{"", "1", "6"}, 0.39},
697 {{"", "1", "7"}, 0.4},
698 {{"", "1", "8"}, 0.35},
699 {{"", "1", "9"}, 0.37},
700 {{"", "1", "10"}, 0.37},
701 {{"", "1", "11"}, 0.37},
702 {{"", "1", "12"}, 0.32},
703 {{"", "2", "1"}, 0.43},
704 {{"", "2", "3"}, 0.46},
705 {{"", "2", "4"}, 0.46},
706 {{"", "2", "5"}, 0.47},
707 {{"", "2", "6"}, 0.44},
708 {{"", "2", "7"}, 0.34},
709 {{"", "2", "8"}, 0.39},
710 {{"", "2", "9"}, 0.41},
711 {{"", "2", "10"}, 0.41},
712 {{"", "2", "11"}, 0.41},
713 {{"", "2", "12"}, 0.35},
714 {{"", "3", "1"}, 0.42},
715 {{"", "3", "2"}, 0.46},
716 {{"", "3", "4"}, 0.47},
717 {{"", "3", "5"}, 0.48},
718 {{"", "3", "6"}, 0.45},
719 {{"", "3", "7"}, 0.34},
720 {{"", "3", "8"}, 0.38},
721 {{"", "3", "9"}, 0.42},
722 {{"", "3", "10"}, 0.42},
723 {{"", "3", "11"}, 0.41},
724 {{"", "3", "12"}, 0.36},
725 {{"", "4", "1"}, 0.41},
726 {{"", "4", "2"}, 0.46},
727 {{"", "4", "3"}, 0.47},
728 {{"", "4", "5"}, 0.48},
729 {{"", "4", "6"}, 0.45},
730 {{"", "4", "7"}, 0.34},
731 {{"", "4", "8"}, 0.37},
732 {{"", "4", "9"}, 0.4},
733 {{"", "4", "10"}, 0.42},
734 {{"", "4", "11"}, 0.41},
735 {{"", "4", "12"}, 0.35},
736 {{"", "5", "1"}, 0.43},
737 {{"", "5", "2"}, 0.47},
738 {{"", "5", "3"}, 0.48},
739 {{"", "5", "4"}, 0.48},
740 {{"", "5", "6"}, 0.47},
741 {{"", "5", "7"}, 0.34},
742 {{"", "5", "8"}, 0.37},
743 {{"", "5", "9"}, 0.4},
744 {{"", "5", "10"}, 0.42},
745 {{"", "5", "11"}, 0.43},
746 {{"", "5", "12"}, 0.36},
747 {{"", "6", "1"}, 0.39},
748 {{"", "6", "2"}, 0.44},
749 {{"", "6", "3"}, 0.45},
750 {{"", "6", "4"}, 0.45},
751 {{"", "6", "5"}, 0.47},
752 {{"", "6", "7"}, 0.32},
753 {{"", "6", "8"}, 0.35},
754 {{"", "6", "9"}, 0.38},
755 {{"", "6", "10"}, 0.39},
756 {{"", "6", "11"}, 0.39},
757 {{"", "6", "12"}, 0.34},
758 {{"", "7", "1"}, 0.4},
759 {{"", "7", "2"}, 0.34},
760 {{"", "7", "3"}, 0.34},
761 {{"", "7", "4"}, 0.34},
762 {{"", "7", "5"}, 0.34},
763 {{"", "7", "6"}, 0.32},
764 {{"", "7", "8"}, 0.26},
765 {{"", "7", "9"}, 0.31},
766 {{"", "7", "10"}, 0.3},
767 {{"", "7", "11"}, 0.29},
768 {{"", "7", "12"}, 0.26},
769 {{"", "8", "1"}, 0.35},
770 {{"", "8", "2"}, 0.39},
771 {{"", "8", "3"}, 0.38},
772 {{"", "8", "4"}, 0.37},
773 {{"", "8", "5"}, 0.37},
774 {{"", "8", "6"}, 0.35},
775 {{"", "8", "7"}, 0.26},
776 {{"", "8", "9"}, 0.34},
777 {{"", "8", "10"}, 0.33},
778 {{"", "8", "11"}, 0.33},
779 {{"", "8", "12"}, 0.3},
780 {{"", "9", "1"}, 0.37},
781 {{"", "9", "2"}, 0.41},
782 {{"", "9", "3"}, 0.42},
783 {{"", "9", "4"}, 0.4},
784 {{"", "9", "5"}, 0.4},
785 {{"", "9", "6"}, 0.38},
786 {{"", "9", "7"}, 0.31},
787 {{"", "9", "8"}, 0.34},
788 {{"", "9", "10"}, 0.37},
789 {{"", "9", "11"}, 0.36},
790 {{"", "9", "12"}, 0.33},
791 {{"", "10", "1"}, 0.37},
792 {{"", "10", "2"}, 0.41},
793 {{"", "10", "3"}, 0.42},
794 {{"", "10", "4"}, 0.42},
795 {{"", "10", "5"}, 0.42},
796 {{"", "10", "6"}, 0.39},
797 {{"", "10", "7"}, 0.3},
798 {{"", "10", "8"}, 0.33},
799 {{"", "10", "9"}, 0.37},
800 {{"", "10", "11"}, 0.38},
801 {{"", "10", "12"}, 0.32},
802 {{"", "11", "1"}, 0.37},
803 {{"", "11", "2"}, 0.41},
804 {{"", "11", "3"}, 0.41},
805 {{"", "11", "4"}, 0.41},
806 {{"", "11", "5"}, 0.43},
807 {{"", "11", "6"}, 0.39},
808 {{"", "11", "7"}, 0.29},
809 {{"", "11", "8"}, 0.33},
810 {{"", "11", "9"}, 0.36},
811 {{"", "11", "10"}, 0.38},
812 {{"", "11", "12"}, 0.32},
813 {{"", "12", "1"}, 0.32},
814 {{"", "12", "2"}, 0.35},
815 {{"", "12", "3"}, 0.36},
816 {{"", "12", "4"}, 0.35},
817 {{"", "12", "5"}, 0.36},
818 {{"", "12", "6"}, 0.34},
819 {{"", "12", "7"}, 0.26},
820 {{"", "12", "8"}, 0.3},
821 {{"", "12", "9"}, 0.33},
822 {{"", "12", "10"}, 0.32},
823 {{"", "12", "11"}, 0.32}
824 };
825
826 // Equity inter-bucket correlations
827 interBucketCorrelation_[RiskType::Equity] = {
828 {{"", "1", "2"}, 0.17},
829 {{"", "1", "3"}, 0.18},
830 {{"", "1", "4"}, 0.19},
831 {{"", "1", "5"}, 0.12},
832 {{"", "1", "6"}, 0.14},
833 {{"", "1", "7"}, 0.15},
834 {{"", "1", "8"}, 0.15},
835 {{"", "1", "9"}, 0.15},
836 {{"", "1", "10"}, 0.12},
837 {{"", "1", "11"}, 0.18},
838 {{"", "1", "12"}, 0.18},
839 {{"", "2", "1"}, 0.17},
840 {{"", "2", "3"}, 0.22},
841 {{"", "2", "4"}, 0.22},
842 {{"", "2", "5"}, 0.14},
843 {{"", "2", "6"}, 0.17},
844 {{"", "2", "7"}, 0.18},
845 {{"", "2", "8"}, 0.18},
846 {{"", "2", "9"}, 0.18},
847 {{"", "2", "10"}, 0.14},
848 {{"", "2", "11"}, 0.22},
849 {{"", "2", "12"}, 0.22},
850 {{"", "3", "1"}, 0.18},
851 {{"", "3", "2"}, 0.22},
852 {{"", "3", "4"}, 0.24},
853 {{"", "3", "5"}, 0.14},
854 {{"", "3", "6"}, 0.2},
855 {{"", "3", "7"}, 0.23},
856 {{"", "3", "8"}, 0.2},
857 {{"", "3", "9"}, 0.19},
858 {{"", "3", "10"}, 0.16},
859 {{"", "3", "11"}, 0.25},
860 {{"", "3", "12"}, 0.25},
861 {{"", "4", "1"}, 0.19},
862 {{"", "4", "2"}, 0.22},
863 {{"", "4", "3"}, 0.24},
864 {{"", "4", "5"}, 0.16},
865 {{"", "4", "6"}, 0.21},
866 {{"", "4", "7"}, 0.21},
867 {{"", "4", "8"}, 0.22},
868 {{"", "4", "9"}, 0.19},
869 {{"", "4", "10"}, 0.16},
870 {{"", "4", "11"}, 0.25},
871 {{"", "4", "12"}, 0.25},
872 {{"", "5", "1"}, 0.12},
873 {{"", "5", "2"}, 0.14},
874 {{"", "5", "3"}, 0.14},
875 {{"", "5", "4"}, 0.16},
876 {{"", "5", "6"}, 0.23},
877 {{"", "5", "7"}, 0.21},
878 {{"", "5", "8"}, 0.24},
879 {{"", "5", "9"}, 0.13},
880 {{"", "5", "10"}, 0.17},
881 {{"", "5", "11"}, 0.26},
882 {{"", "5", "12"}, 0.26},
883 {{"", "6", "1"}, 0.14},
884 {{"", "6", "2"}, 0.17},
885 {{"", "6", "3"}, 0.2},
886 {{"", "6", "4"}, 0.21},
887 {{"", "6", "5"}, 0.23},
888 {{"", "6", "7"}, 0.29},
889 {{"", "6", "8"}, 0.3},
890 {{"", "6", "9"}, 0.16},
891 {{"", "6", "10"}, 0.22},
892 {{"", "6", "11"}, 0.32},
893 {{"", "6", "12"}, 0.32},
894 {{"", "7", "1"}, 0.15},
895 {{"", "7", "2"}, 0.18},
896 {{"", "7", "3"}, 0.23},
897 {{"", "7", "4"}, 0.21},
898 {{"", "7", "5"}, 0.21},
899 {{"", "7", "6"}, 0.29},
900 {{"", "7", "8"}, 0.29},
901 {{"", "7", "9"}, 0.16},
902 {{"", "7", "10"}, 0.22},
903 {{"", "7", "11"}, 0.33},
904 {{"", "7", "12"}, 0.33},
905 {{"", "8", "1"}, 0.15},
906 {{"", "8", "2"}, 0.18},
907 {{"", "8", "3"}, 0.2},
908 {{"", "8", "4"}, 0.22},
909 {{"", "8", "5"}, 0.24},
910 {{"", "8", "6"}, 0.3},
911 {{"", "8", "7"}, 0.29},
912 {{"", "8", "9"}, 0.17},
913 {{"", "8", "10"}, 0.22},
914 {{"", "8", "11"}, 0.33},
915 {{"", "8", "12"}, 0.33},
916 {{"", "9", "1"}, 0.15},
917 {{"", "9", "2"}, 0.18},
918 {{"", "9", "3"}, 0.19},
919 {{"", "9", "4"}, 0.19},
920 {{"", "9", "5"}, 0.13},
921 {{"", "9", "6"}, 0.16},
922 {{"", "9", "7"}, 0.16},
923 {{"", "9", "8"}, 0.17},
924 {{"", "9", "10"}, 0.13},
925 {{"", "9", "11"}, 0.2},
926 {{"", "9", "12"}, 0.2},
927 {{"", "10", "1"}, 0.12},
928 {{"", "10", "2"}, 0.14},
929 {{"", "10", "3"}, 0.16},
930 {{"", "10", "4"}, 0.16},
931 {{"", "10", "5"}, 0.17},
932 {{"", "10", "6"}, 0.22},
933 {{"", "10", "7"}, 0.22},
934 {{"", "10", "8"}, 0.22},
935 {{"", "10", "9"}, 0.13},
936 {{"", "10", "11"}, 0.23},
937 {{"", "10", "12"}, 0.23},
938 {{"", "11", "1"}, 0.18},
939 {{"", "11", "2"}, 0.22},
940 {{"", "11", "3"}, 0.25},
941 {{"", "11", "4"}, 0.25},
942 {{"", "11", "5"}, 0.26},
943 {{"", "11", "6"}, 0.32},
944 {{"", "11", "7"}, 0.33},
945 {{"", "11", "8"}, 0.33},
946 {{"", "11", "9"}, 0.2},
947 {{"", "11", "10"}, 0.23},
948 {{"", "11", "12"}, 0.4},
949 {{"", "12", "1"}, 0.18},
950 {{"", "12", "2"}, 0.22},
951 {{"", "12", "3"}, 0.25},
952 {{"", "12", "4"}, 0.25},
953 {{"", "12", "5"}, 0.26},
954 {{"", "12", "6"}, 0.32},
955 {{"", "12", "7"}, 0.33},
956 {{"", "12", "8"}, 0.33},
957 {{"", "12", "9"}, 0.2},
958 {{"", "12", "10"}, 0.23},
959 {{"", "12", "11"}, 0.4}
960 };
961
962 // Commodity inter-bucket correlations
963 interBucketCorrelation_[RiskType::Commodity] = {
964 {{"", "1", "2"}, 0.15},
965 {{"", "1", "3"}, 0.13},
966 {{"", "1", "4"}, 0.17},
967 {{"", "1", "5"}, 0.16},
968 {{"", "1", "6"}, 0.02},
969 {{"", "1", "7"}, 0.19},
970 {{"", "1", "8"}, -0.02},
971 {{"", "1", "9"}, 0.19},
972 {{"", "1", "10"}, 0.01},
973 {{"", "1", "11"}, 0.12},
974 {{"", "1", "12"}, 0.12},
975 {{"", "1", "13"}, -0.01},
976 {{"", "1", "14"}, 0.11},
977 {{"", "1", "15"}, 0.02},
978 {{"", "1", "16"}, 0.0},
979 {{"", "1", "17"}, 0.09},
980 {{"", "2", "1"}, 0.15},
981 {{"", "2", "3"}, 0.93},
982 {{"", "2", "4"}, 0.95},
983 {{"", "2", "5"}, 0.93},
984 {{"", "2", "6"}, 0.23},
985 {{"", "2", "7"}, 0.2},
986 {{"", "2", "8"}, 0.2},
987 {{"", "2", "9"}, 0.2},
988 {{"", "2", "10"}, 0.06},
989 {{"", "2", "11"}, 0.36},
990 {{"", "2", "12"}, 0.23},
991 {{"", "2", "13"}, 0.3},
992 {{"", "2", "14"}, 0.28},
993 {{"", "2", "15"}, 0.1},
994 {{"", "2", "16"}, 0.0},
995 {{"", "2", "17"}, 0.63},
996 {{"", "3", "1"}, 0.13},
997 {{"", "3", "2"}, 0.93},
998 {{"", "3", "4"}, 0.9},
999 {{"", "3", "5"}, 0.89},
1000 {{"", "3", "6"}, 0.15},
1001 {{"", "3", "7"}, 0.18},
1002 {{"", "3", "8"}, 0.13},
1003 {{"", "3", "9"}, 0.14},
1004 {{"", "3", "10"}, 0.02},
1005 {{"", "3", "11"}, 0.22},
1006 {{"", "3", "12"}, 0.08},
1007 {{"", "3", "13"}, 0.21},
1008 {{"", "3", "14"}, 0.13},
1009 {{"", "3", "15"}, 0.02},
1010 {{"", "3", "16"}, 0.0},
1011 {{"", "3", "17"}, 0.58},
1012 {{"", "4", "1"}, 0.17},
1013 {{"", "4", "2"}, 0.95},
1014 {{"", "4", "3"}, 0.9},
1015 {{"", "4", "5"}, 0.9},
1016 {{"", "4", "6"}, 0.18},
1017 {{"", "4", "7"}, 0.22},
1018 {{"", "4", "8"}, 0.16},
1019 {{"", "4", "9"}, 0.2},
1020 {{"", "4", "10"}, 0.0},
1021 {{"", "4", "11"}, 0.35},
1022 {{"", "4", "12"}, 0.18},
1023 {{"", "4", "13"}, 0.27},
1024 {{"", "4", "14"}, 0.25},
1025 {{"", "4", "15"}, 0.05},
1026 {{"", "4", "16"}, 0.0},
1027 {{"", "4", "17"}, 0.6},
1028 {{"", "5", "1"}, 0.16},
1029 {{"", "5", "2"}, 0.93},
1030 {{"", "5", "3"}, 0.89},
1031 {{"", "5", "4"}, 0.9},
1032 {{"", "5", "6"}, 0.23},
1033 {{"", "5", "7"}, 0.21},
1034 {{"", "5", "8"}, 0.2},
1035 {{"", "5", "9"}, 0.19},
1036 {{"", "5", "10"}, 0.09},
1037 {{"", "5", "11"}, 0.38},
1038 {{"", "5", "12"}, 0.25},
1039 {{"", "5", "13"}, 0.33},
1040 {{"", "5", "14"}, 0.27},
1041 {{"", "5", "15"}, 0.09},
1042 {{"", "5", "16"}, 0.0},
1043 {{"", "5", "17"}, 0.62},
1044 {{"", "6", "1"}, 0.02},
1045 {{"", "6", "2"}, 0.23},
1046 {{"", "6", "3"}, 0.15},
1047 {{"", "6", "4"}, 0.18},
1048 {{"", "6", "5"}, 0.23},
1049 {{"", "6", "7"}, 0.18},
1050 {{"", "6", "8"}, 0.63},
1051 {{"", "6", "9"}, 0.16},
1052 {{"", "6", "10"}, 0.02},
1053 {{"", "6", "11"}, 0.13},
1054 {{"", "6", "12"}, -0.02},
1055 {{"", "6", "13"}, 0.18},
1056 {{"", "6", "14"}, 0.1},
1057 {{"", "6", "15"}, -0.03},
1058 {{"", "6", "16"}, 0.0},
1059 {{"", "6", "17"}, 0.27},
1060 {{"", "7", "1"}, 0.19},
1061 {{"", "7", "2"}, 0.2},
1062 {{"", "7", "3"}, 0.18},
1063 {{"", "7", "4"}, 0.22},
1064 {{"", "7", "5"}, 0.21},
1065 {{"", "7", "6"}, 0.18},
1066 {{"", "7", "8"}, 0.08},
1067 {{"", "7", "9"}, 0.62},
1068 {{"", "7", "10"}, 0.11},
1069 {{"", "7", "11"}, 0.11},
1070 {{"", "7", "12"}, 0.01},
1071 {{"", "7", "13"}, 0.07},
1072 {{"", "7", "14"}, 0.1},
1073 {{"", "7", "15"}, 0.02},
1074 {{"", "7", "16"}, 0.0},
1075 {{"", "7", "17"}, 0.15},
1076 {{"", "8", "1"}, -0.02},
1077 {{"", "8", "2"}, 0.2},
1078 {{"", "8", "3"}, 0.13},
1079 {{"", "8", "4"}, 0.16},
1080 {{"", "8", "5"}, 0.2},
1081 {{"", "8", "6"}, 0.63},
1082 {{"", "8", "7"}, 0.08},
1083 {{"", "8", "9"}, 0.16},
1084 {{"", "8", "10"}, -0.04},
1085 {{"", "8", "11"}, 0.09},
1086 {{"", "8", "12"}, 0.02},
1087 {{"", "8", "13"}, 0.1},
1088 {{"", "8", "14"}, 0.06},
1089 {{"", "8", "15"}, 0.03},
1090 {{"", "8", "16"}, 0.0},
1091 {{"", "8", "17"}, 0.2},
1092 {{"", "9", "1"}, 0.19},
1093 {{"", "9", "2"}, 0.2},
1094 {{"", "9", "3"}, 0.14},
1095 {{"", "9", "4"}, 0.2},
1096 {{"", "9", "5"}, 0.19},
1097 {{"", "9", "6"}, 0.16},
1098 {{"", "9", "7"}, 0.62},
1099 {{"", "9", "8"}, 0.16},
1100 {{"", "9", "10"}, 0.01},
1101 {{"", "9", "11"}, 0.11},
1102 {{"", "9", "12"}, 0.0},
1103 {{"", "9", "13"}, 0.1},
1104 {{"", "9", "14"}, 0.09},
1105 {{"", "9", "15"}, 0.05},
1106 {{"", "9", "16"}, 0.0},
1107 {{"", "9", "17"}, 0.13},
1108 {{"", "10", "1"}, 0.01},
1109 {{"", "10", "2"}, 0.06},
1110 {{"", "10", "3"}, 0.02},
1111 {{"", "10", "4"}, 0.0},
1112 {{"", "10", "5"}, 0.09},
1113 {{"", "10", "6"}, 0.02},
1114 {{"", "10", "7"}, 0.11},
1115 {{"", "10", "8"}, -0.04},
1116 {{"", "10", "9"}, 0.01},
1117 {{"", "10", "11"}, 0.07},
1118 {{"", "10", "12"}, 0.05},
1119 {{"", "10", "13"}, 0.07},
1120 {{"", "10", "14"}, 0.07},
1121 {{"", "10", "15"}, 0.01},
1122 {{"", "10", "16"}, 0.0},
1123 {{"", "10", "17"}, 0.01},
1124 {{"", "11", "1"}, 0.12},
1125 {{"", "11", "2"}, 0.36},
1126 {{"", "11", "3"}, 0.22},
1127 {{"", "11", "4"}, 0.35},
1128 {{"", "11", "5"}, 0.38},
1129 {{"", "11", "6"}, 0.13},
1130 {{"", "11", "7"}, 0.11},
1131 {{"", "11", "8"}, 0.09},
1132 {{"", "11", "9"}, 0.11},
1133 {{"", "11", "10"}, 0.07},
1134 {{"", "11", "12"}, 0.35},
1135 {{"", "11", "13"}, 0.21},
1136 {{"", "11", "14"}, 0.2},
1137 {{"", "11", "15"}, 0.1},
1138 {{"", "11", "16"}, 0.0},
1139 {{"", "11", "17"}, 0.31},
1140 {{"", "12", "1"}, 0.12},
1141 {{"", "12", "2"}, 0.23},
1142 {{"", "12", "3"}, 0.08},
1143 {{"", "12", "4"}, 0.18},
1144 {{"", "12", "5"}, 0.25},
1145 {{"", "12", "6"}, -0.02},
1146 {{"", "12", "7"}, 0.01},
1147 {{"", "12", "8"}, 0.02},
1148 {{"", "12", "9"}, 0.0},
1149 {{"", "12", "10"}, 0.05},
1150 {{"", "12", "11"}, 0.35},
1151 {{"", "12", "13"}, 0.11},
1152 {{"", "12", "14"}, 0.24},
1153 {{"", "12", "15"}, 0.05},
1154 {{"", "12", "16"}, 0.0},
1155 {{"", "12", "17"}, 0.16},
1156 {{"", "13", "1"}, -0.01},
1157 {{"", "13", "2"}, 0.3},
1158 {{"", "13", "3"}, 0.21},
1159 {{"", "13", "4"}, 0.27},
1160 {{"", "13", "5"}, 0.33},
1161 {{"", "13", "6"}, 0.18},
1162 {{"", "13", "7"}, 0.07},
1163 {{"", "13", "8"}, 0.1},
1164 {{"", "13", "9"}, 0.1},
1165 {{"", "13", "10"}, 0.07},
1166 {{"", "13", "11"}, 0.21},
1167 {{"", "13", "12"}, 0.11},
1168 {{"", "13", "14"}, 0.27},
1169 {{"", "13", "15"}, 0.13},
1170 {{"", "13", "16"}, 0.0},
1171 {{"", "13", "17"}, 0.35},
1172 {{"", "14", "1"}, 0.11},
1173 {{"", "14", "2"}, 0.28},
1174 {{"", "14", "3"}, 0.13},
1175 {{"", "14", "4"}, 0.25},
1176 {{"", "14", "5"}, 0.27},
1177 {{"", "14", "6"}, 0.1},
1178 {{"", "14", "7"}, 0.1},
1179 {{"", "14", "8"}, 0.06},
1180 {{"", "14", "9"}, 0.09},
1181 {{"", "14", "10"}, 0.07},
1182 {{"", "14", "11"}, 0.2},
1183 {{"", "14", "12"}, 0.24},
1184 {{"", "14", "13"}, 0.27},
1185 {{"", "14", "15"}, 0.08},
1186 {{"", "14", "16"}, 0.0},
1187 {{"", "14", "17"}, 0.21},
1188 {{"", "15", "1"}, 0.02},
1189 {{"", "15", "2"}, 0.1},
1190 {{"", "15", "3"}, 0.02},
1191 {{"", "15", "4"}, 0.05},
1192 {{"", "15", "5"}, 0.09},
1193 {{"", "15", "6"}, -0.03},
1194 {{"", "15", "7"}, 0.02},
1195 {{"", "15", "8"}, 0.03},
1196 {{"", "15", "9"}, 0.05},
1197 {{"", "15", "10"}, 0.01},
1198 {{"", "15", "11"}, 0.1},
1199 {{"", "15", "12"}, 0.05},
1200 {{"", "15", "13"}, 0.13},
1201 {{"", "15", "14"}, 0.08},
1202 {{"", "15", "16"}, 0.0},
1203 {{"", "15", "17"}, 0.12},
1204 {{"", "16", "1"}, 0.0},
1205 {{"", "16", "2"}, 0.0},
1206 {{"", "16", "3"}, 0.0},
1207 {{"", "16", "4"}, 0.0},
1208 {{"", "16", "5"}, 0.0},
1209 {{"", "16", "6"}, 0.0},
1210 {{"", "16", "7"}, 0.0},
1211 {{"", "16", "8"}, 0.0},
1212 {{"", "16", "9"}, 0.0},
1213 {{"", "16", "10"}, 0.0},
1214 {{"", "16", "11"}, 0.0},
1215 {{"", "16", "12"}, 0.0},
1216 {{"", "16", "13"}, 0.0},
1217 {{"", "16", "14"}, 0.0},
1218 {{"", "16", "15"}, 0.0},
1219 {{"", "16", "17"}, 0.0},
1220 {{"", "17", "1"}, 0.09},
1221 {{"", "17", "2"}, 0.63},
1222 {{"", "17", "3"}, 0.58},
1223 {{"", "17", "4"}, 0.6},
1224 {{"", "17", "5"}, 0.62},
1225 {{"", "17", "6"}, 0.27},
1226 {{"", "17", "7"}, 0.15},
1227 {{"", "17", "8"}, 0.2},
1228 {{"", "17", "9"}, 0.13},
1229 {{"", "17", "10"}, 0.01},
1230 {{"", "17", "11"}, 0.31},
1231 {{"", "17", "12"}, 0.16},
1232 {{"", "17", "13"}, 0.35},
1233 {{"", "17", "14"}, 0.21},
1234 {{"", "17", "15"}, 0.12},
1235 {{"", "17", "16"}, 0.0}
1236 };
1237
1238 // Equity intra-bucket correlations (exclude Residual and deal with it in the method - it is 0%) - changed
1239 intraBucketCorrelation_[RiskType::Equity] = {
1240 {{"1", "", ""}, 0.16},
1241 {{"2", "", ""}, 0.21},
1242 {{"3", "", ""}, 0.28},
1243 {{"4", "", ""}, 0.25},
1244 {{"5", "", ""}, 0.20},
1245 {{"6", "", ""}, 0.30},
1246 {{"7", "", ""}, 0.33},
1247 {{"8", "", ""}, 0.31},
1248 {{"9", "", ""}, 0.18},
1249 {{"10", "", ""}, 0.18},
1250 {{"11", "", ""}, 0.40},
1251 {{"12", "", ""}, 0.40}
1252 };
1253
1254 // Commodity intra-bucket correlations
1255 intraBucketCorrelation_[RiskType::Commodity] = {
1256 {{"1", "", ""}, 0.28},
1257 {{"2", "", ""}, 0.98},
1258 {{"3", "", ""}, 0.92},
1259 {{"4", "", ""}, 0.97},
1260 {{"5", "", ""}, 0.99},
1261 {{"6", "", ""}, 0.74},
1262 {{"7", "", ""}, 0.87},
1263 {{"8", "", ""}, 0.35},
1264 {{"9", "", ""}, 0.69},
1265 {{"10", "", ""}, 0.14},
1266 {{"11", "", ""}, 0.53},
1267 {{"12", "", ""}, 0.63},
1268 {{"13", "", ""}, 0.61},
1269 {{"14", "", ""}, 0.18},
1270 {{"15", "", ""}, 0.15},
1271 {{"16", "", ""}, 0.00},
1272 {{"17", "", ""}, 0.36}
1273 };
1274
1275 // Initialise the single, ad-hoc type, correlations
1276 xccyCorr_ = 0.13;
1277 infCorr_ = 0.39;
1278 infVolCorr_ = 0.39;
1279 irSubCurveCorr_ = 0.985;
1280 irInterCurrencyCorr_ = 0.22;
1282 crqSameIntraCorr_ = 0.95;
1283 crqDiffIntraCorr_ = 0.41;
1285 crnqSameIntraCorr_ = 0.43;
1286 crnqDiffIntraCorr_ = 0.15;
1287 crnqInterCorr_ = 0.17;
1288 fxCorr_ = 0.5;
1289 basecorrCorr_ = 0.14;
1290
1291 // clang-format ond
1292}
1293
1294/* The CurvatureMargin must be multiplied by a scale factor of HVR(IR)^{-2}, where HVR(IR)
1295is the historical volatility ratio for the interest-rate risk class (see page 5 section 11
1296of the ISDA-SIMM-v2.1 documentation).
1297*/
1298QuantLib::Real SimmConfiguration_ISDA_V2_2::curvatureMarginScaling() const { return pow(hvr_ir_, -2.0); }
1299
1300void SimmConfiguration_ISDA_V2_2::addLabels2(const RiskType& rt, const string& label_2) {
1301 // Call the shared implementation
1303}
1304
1305string SimmConfiguration_ISDA_V2_2::label2(const QuantLib::ext::shared_ptr<InterestRateIndex>& irIndex) const {
1306 // Special for BMA
1307 if (boost::algorithm::starts_with(irIndex->name(), "BMA")) {
1308 return "Municipal";
1309 }
1310
1311 // Otherwise pass off to base class
1312 return SimmConfigurationBase::label2(irIndex);
1313}
1314
1315} // namespace analytics
1316} // namespace ore
virtual std::string label2(const QuantLib::ext::shared_ptr< QuantLib::InterestRateIndex > &irIndex) const
QuantLib::Real correlation(const CrifRecord::RiskType &firstRt, const std::string &firstQualifier, const std::string &firstLabel_1, const std::string &firstLabel_2, const CrifRecord::RiskType &secondRt, const std::string &secondQualifier, const std::string &secondLabel_1, const std::string &secondLabel_2, const std::string &calculationCurrency="") const override
QuantLib::Real weight(const CrifRecord::RiskType &rt, boost::optional< std::string > qualifier=boost::none, boost::optional< std::string > label_1=boost::none, const std::string &calculationCurrency="") const override
QuantLib::Matrix fxRegVolCorrelation_
FX Correlations when the calculation ccy is in the Regular Volatility group.
QuantLib::Matrix fxHighVolCorrelation_
FX Correlations when the calculation ccy is in the High Volatility group.
SimmConfiguration_ISDA_V2_2(const QuantLib::ext::shared_ptr< SimmBucketMapper > &simmBucketMapper, const QuantLib::Size &mporDays=10, const std::string &name="SIMM ISDA 2.2 (10 July 2018)", const std::string version="2.2")
std::string label2(const QuantLib::ext::shared_ptr< QuantLib::InterestRateIndex > &irIndex) const override
Return the SIMM Label2 value for the given interest rate index.
void addLabels2(const CrifRecord::RiskType &rt, const std::string &label_2) override
Add SIMM Label2 values under certain circumstances.
std::map< QuantLib::Size, std::set< std::string > > ccyGroups_
QuantLib::Matrix rwFX_
FX risk weight matrix.
QuantLib::Real hvr_ir_
IR Historical volatility ratio.
QuantLib::Size group(const std::string &qualifier, const std::map< QuantLib::Size, std::set< std::string > > &groups) const
Find the group of the qualifier.
QuantLib::Real correlation(const CrifRecord::RiskType &firstRt, const std::string &firstQualifier, const std::string &firstLabel_1, const std::string &firstLabel_2, const CrifRecord::RiskType &secondRt, const std::string &secondQualifier, const std::string &secondLabel_1, const std::string &secondLabel_2, const std::string &calculationCurrency="") const override
QuantLib::Real crqResidualIntraCorr_
Credit-Q residual intra correlation.
QuantLib::Real basecorrCorr_
Base correlation risk factor correlation.
std::map< CrifRecord::RiskType, QuantLib::Real > rwRiskType_
QuantLib::Real weight(const CrifRecord::RiskType &rt, boost::optional< std::string > qualifier=boost::none, boost::optional< std::string > label_1=boost::none, const std::string &calculationCurrency="") const override
QuantLib::Real crnqResidualIntraCorr_
Credit-NonQ residual intra correlation.
QuantLib::Size mporDays() const
MPOR in days.
std::map< CrifRecord::RiskType, std::vector< std::string > > mapLabels_2_
QuantLib::Real irInterCurrencyCorr_
IR correlation across currencies.
std::map< CrifRecord::RiskType, Amounts > rwLabel_1_
std::map< CrifRecord::RiskType, Amounts > intraBucketCorrelation_
std::map< CrifRecord::RiskType, std::vector< std::string > > mapBuckets_
QuantLib::Real crnqDiffIntraCorr_
Credit-NonQ non-residual intra correlation when different underlying names.
QuantLib::Real crqSameIntraCorr_
Credit-Q non-residual intra correlation when same qualifier but different vertex/source.
QuantLib::Real crnqSameIntraCorr_
Credit-NonQ non-residual intra correlation when same underlying names.
std::set< CrifRecord::RiskType > validRiskTypes_
Set of valid risk types for the current configuration.
QuantLib::ext::shared_ptr< SimmConcentration > simmConcentration_
Used to get the concentration thresholds for a given risk type and qualifier.
QuantLib::Real infCorr_
Correlation between any yield and inflation in same currency.
Amounts riskClassCorrelation_
Risk class correlation matrix.
QuantLib::Real crnqInterCorr_
Credit-NonQ non-residual inter bucket correlation.
std::map< CrifRecord::RiskType, QuantLib::Real > historicalVolatilityRatios_
Map from risk type to a historical volatility ratio.
std::map< CrifRecord::RiskType, Amounts > interBucketCorrelation_
std::map< CrifRecord::RiskType, std::vector< std::string > > mapLabels_1_
QuantLib::Real infVolCorr_
Correlation between any yield volatility and inflation volatility in same currency.
QuantLib::Real crqDiffIntraCorr_
Credit-Q non-residual intra correlation when different qualifier.
QuantLib::Real irSubCurveCorr_
IR Label2 level i.e. sub-curve correlation.
void addLabels2Impl(const CrifRecord::RiskType &rt, const std::string &label_2)
A base implementation of addLabels2 that can be shared by derived classes.
std::map< CrifRecord::RiskType, std::vector< QuantLib::Real > > curvatureWeights_
QuantLib::ext::shared_ptr< SimmBucketMapper > simmBucketMapper_
Used to map SIMM Qualifier names to SIMM bucket values.
std::map< CrifRecord::RiskType, Amounts > rwBucket_
RandomVariable pow(RandomVariable x, const RandomVariable &y)
CrifRecord::RiskType RiskType
Definition: crifloader.cpp:92
SIMM concentration thresholds for SIMM version 2.2.
SIMM configuration for SIMM version 2.2.
string name