QuantLib: a free/open-source library for quantitative finance
fully annotated source code - version 1.34
Loading...
Searching...
No Matches
endeulerdiscretization.hpp
Go to the documentation of this file.
1/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3/*
4 Copyright (C) 2008 Frank Hövermann
5
6 This file is part of QuantLib, a free-software/open-source library
7 for financial quantitative analysts and developers - http://quantlib.org/
8
9 QuantLib is free software: you can redistribute it and/or modify it
10 under the terms of the QuantLib license. You should have received a
11 copy of the license along with this program; if not, please email
12 <quantlib-dev@lists.sf.net>. The license is also available online at
13 <http://quantlib.org/license.shtml>.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17 FOR A PARTICULAR PURPOSE. See the license for more details.
18*/
19
20/*! \file endeulerdiscretization.hpp
21 \brief Euler end-point discretization for stochastic processes
22*/
23
24#ifndef quantlib_end_euler_discretization_hpp
25#define quantlib_end_euler_discretization_hpp
26
28
29namespace QuantLib {
30
31 //! Euler end-point discretization for stochastic processes
32 /*! \ingroup processes */
36 public:
37
38 /*! Returns an approximation of the drift defined as
39 \f$ \mu(t_0 + \Delta t, \mathbf{x}_0) \Delta t \f$.
40 */
41 Array drift(const StochasticProcess&, Time t0, const Array& x0, Time dt) const override;
42 /*! Returns an approximation of the drift defined as
43 \f$ \mu(t_0 + \Delta t, x_0) \Delta t \f$.
44 */
45 Real drift(const StochasticProcess1D&, Time t0, Real x0, Time dt) const override;
46
47 /*! Returns an approximation of the diffusion defined as
48 \f$ \sigma(t_0 + \Delta t, \mathbf{x}_0) \sqrt{\Delta t} \f$.
49 */
50 Matrix diffusion(const StochasticProcess&, Time t0, const Array& x0, Time dt) const override;
51 /*! Returns an approximation of the diffusion defined as
52 \f$ \sigma(t_0 + \Delta t, x_0) \sqrt{\Delta t} \f$.
53 */
54 Real diffusion(const StochasticProcess1D&, Time t0, Real x0, Time dt) const override;
55
56 /*! Returns an approximation of the covariance defined as
57 \f$ \sigma(t_0 + \Delta t, \mathbf{x}_0)^2 \Delta t \f$.
58 */
59 Matrix covariance(const StochasticProcess&, Time t0, const Array& x0, Time dt) const override;
60 /*! Returns an approximation of the variance defined as
61 \f$ \sigma(t_0 + \Delta t, x_0)^2 \Delta t \f$.
62 */
63 Real variance(const StochasticProcess1D&, Time t0, Real x0, Time dt) const override;
64 };
65
66}
67
68
69#endif
70
1-D array used in linear algebra.
Definition: array.hpp:52
Euler end-point discretization for stochastic processes.
Matrix diffusion(const StochasticProcess &, Time t0, const Array &x0, Time dt) const override
Matrix covariance(const StochasticProcess &, Time t0, const Array &x0, Time dt) const override
Array drift(const StochasticProcess &, Time t0, const Array &x0, Time dt) const override
Matrix used in linear algebra.
Definition: matrix.hpp:41
discretization of a 1-D stochastic process
1-dimensional stochastic process
discretization of a stochastic process over a given time interval
multi-dimensional stochastic process class.
LinearInterpolation variance
Real Time
continuous quantity with 1-year units
Definition: types.hpp:62
QL_REAL Real
real number
Definition: types.hpp:50
Definition: any.hpp:35
stochastic processes