QuantLib: a free/open-source library for quantitative finance
fully annotated source code - version 1.34
Loading...
Searching...
No Matches
gemanroncoroniprocess.cpp
Go to the documentation of this file.
1/* -*- mode: c++; tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 4 -*- */
2
3/*
4 Copyright (C) 2011 Klaus Spanderen
5
6 This file is part of QuantLib, a free-software/open-source library
7 for financial quantitative analysts and developers - http://quantlib.org/
8
9 QuantLib is free software: you can redistribute it and/or modify it
10 under the terms of the QuantLib license. You should have received a
11 copy of the license along with this program; if not, please email
12 <quantlib-dev@lists.sf.net>. The license is also available online at
13 <http://quantlib.org/license.shtml>.
14
15 This program is distributed in the hope that it will be useful, but WITHOUT
16 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
17 FOR A PARTICULAR PURPOSE. See the license for more details.
18*/
19
20/*! \file gemanroncoroniprocess.cpp
21 \brief Geman-Roncoroni process
22*/
23
27
28
29namespace QuantLib {
30
32 Real x0,
34 Real gamma, Real delta,
35 Real eps, Real zeta, Real d,
36 Real k, Real tau,
37 Real sig2, Real a, Real b,
38 Real theta1, Real theta2, Real theta3,
39 Real psi)
40 : StochasticProcess1D(ext::shared_ptr<discretization>(
42 x0_(x0),
43 alpha_(alpha), beta_(beta),
44 gamma_(gamma), delta_(delta),
45 eps_(eps), zeta_(zeta), d_(d),
46 k_(k), tau_(tau),
47 sig2_(sig2), a_(a), b_(b),
48 theta1_(theta1), theta2_(theta2), theta3_(theta3),
49 psi_(psi) {
50 }
51
53 return x0_;
54 }
55
57 const Real mu = alpha_ + beta_*t + gamma_*std::cos(eps_+2*M_PI*t)
58 + delta_*std::cos(zeta_+4*M_PI*t);
59 const Real muPrime = beta_ - gamma_*2*M_PI*std::sin(eps_+2*M_PI*t)
60 - delta_*4*M_PI*std::sin(zeta_+4*M_PI*t);
61
62 return muPrime + theta1_*(mu-x);
63 }
64
66 return std::sqrt(sig2_ + a_*squared(std::cos(M_PI*t+b_)));
67 }
68
70 const Volatility sig2t = sig2_+a_*squared(std::cos(M_PI*t0+b_));
71
72 return std::sqrt(sig2t/(2*theta1_)*(1.0-std::exp(-2*theta1_*dt)));
73 }
74
76 Time dt, Real dw) const {
77 // random number generator for the jump part
78 if (!urng_) {
79 typedef PseudoRandom::urng_type urng_type;
80 urng_ = ext::make_shared<urng_type>((unsigned long)(1234UL * dw + 56789UL));
81 }
82 Array du(3);
83 du[0] = urng_->next().value;
84 du[1] = urng_->next().value;
85
86 return evolve(t0, x0, dt, dw, du);
87 }
88
90 Real dw, const Array& du) const {
91 Real retVal;
92 const Time t = t0 + 0.5*dt;
93 const Real mu = alpha_ + beta_*t + gamma_*std::cos(eps_ +2*M_PI*t)
94 + delta_*std::cos(zeta_+4*M_PI*t);
95
96 const Real j = -1.0/theta3_
97 *std::log(1.0+du[1]*(std::exp(-theta3_*psi_)-1.0));
98
99 if (x0 <= mu+d_) {
100 retVal = StochasticProcess1D::evolve(t, x0, dt, dw);
101
102 const Real jumpIntensity
103 = theta2_*(2.0/(1+std::fabs(std::sin(M_PI*(t-tau_)/k_)))-1);
104 const Time interarrival = -1.0/jumpIntensity*std::log(du[0]);
105
106 if (interarrival < dt) {
107 retVal += j;
108 }
109 }
110 else {
111 retVal = x0-j;
112 }
113
114 return retVal;
115 }
116}
1-D array used in linear algebra.
Definition: array.hpp:52
Euler discretization for stochastic processes.
Real diffusion(Time t, Real x) const override
returns the diffusion part of the equation, i.e.
ext::shared_ptr< PseudoRandom::urng_type > urng_
Real stdDeviation(Time t0, Real x0, Time dt) const override
Real evolve(Time t0, Real x0, Time dt, Real dw) const override
Real drift(Time t, Real x) const override
returns the drift part of the equation, i.e.
GemanRoncoroniProcess(Real x0, Real alpha, Real beta, Real gamma, Real delta, Real eps, Real zeta, Real d, Real k, Real tau, Real sig2, Real a, Real b, Real theta1, Real theta2, Real theta3, Real psi)
Real x0() const override
returns the initial value of the state variable
1-dimensional stochastic process
virtual Real evolve(Time t0, Real x0, Time dt, Real dw) const
discretization of a stochastic process over a given time interval
Real a_
Size k_
const DefaultType & t
Euler discretization for stochastic processes.
Date d
ext::function< Real(Real)> b
Geman-Roncoroni process.
Real Time
continuous quantity with 1-year units
Definition: types.hpp:62
QL_REAL Real
real number
Definition: types.hpp:50
Real Volatility
volatility
Definition: types.hpp:78
const VF_R b_
functionals and combinators not included in the STL
#define M_PI
Definition: any.hpp:35
T squared(T x)
Definition: functional.hpp:37
Real beta
Definition: sabr.cpp:200
Real alpha
Definition: sabr.cpp:200