Logo
Fully annotated reference manual - version 1.8.12
Loading...
Searching...
No Matches
namespaces.docs
Go to the documentation of this file.
1/*
2 Copyright (C) 2016 Quaternion Risk Management Ltd
3 All rights reserved.
4
5 This file is part of ORE, a free-software/open-source library
6 for transparent pricing and risk analysis - http://opensourcerisk.org
7
8 ORE is free software: you can redistribute it and/or modify it
9 under the terms of the Modified BSD License. You should have received a
10 copy of the license along with this program.
11 The license is also available online at <http://opensourcerisk.org>
12
13 This program is distributed on the basis that it will form a useful
14 contribution to risk analytics and model standardisation, but WITHOUT
15 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 FITNESS FOR A PARTICULAR PURPOSE. See the license for more details.
17*/
18
19namespace QuantExt {
20
21/*! CrossAssetAnalytics
22
23 This namesace provides a number of functions which compute analytical moments
24 (expectations and covariances) of cross asset model factors.
25 These are used in the exact propagation of cross asset model paths (i.e. without
26 time discretisation error).
27
28 Reference:
29 Lichters, Stamm, Gallagher: Modern Derivatives Pricing and Credit Exposure
30 Analysis, Palgrave Macmillan, 2015
31
32 See also the documentation in class CrossAssetModel.
33
34 Section 16.1 in the reference above lists the analytical expectations and covariances
35 implemented in this namespace.
36 In the following we consider time intervals \f$(s,t)\f$. We aim at computing conditional
37 expectations of factors at time \f$t\f$ given their state at time \f$s\f$, likewise covariances of
38 factor moves \f$\Delta z\f$ and \f$\Delta x\f$ over time interval \f$(s,t)\f$.
39
40 Starting with the interest rate processes
41 \f{eqnarray*}{
42 dz_i &=& \epsilon_i\,\gamma_i\,dt + \alpha^z_i\,dW^z_i, \qquad \epsilon_i = \left\{ \begin{array}{ll} 0 & i = 0 \\ 1 & i > 0 \end{array}\right.
43 \f}
44 we get the factor move by integration
45 \f{eqnarray*}{
46 \Delta z_i &=& -\int_s^t H^z_i\,(\alpha^z_i)^2\,du + \rho^{zz}_{0i} \int_s^t H^z_0\,\alpha^z_0\,\alpha^z_i\,du\\
47 && - \epsilon_i \rho^{zx}_{ii}\int_s^t \sigma_i^x\,\alpha^z_i\,du + \int_s^t \alpha^z_i\,dW^z_i. \\
48 \f}
49 Thus, conditional expectation and covariances are
50 \f{eqnarray*}{
51 \mathbb{E}[\Delta z_i] &=& -\int_s^t H^z_i\,(\alpha^z_i)^2\,du + \rho^{zz}_{0i} \int_s^t H^z_0\,\alpha^z_0\,\alpha^z_i\,du
52 - \epsilon_i \rho^{zx}_{ii}\int_s^t \sigma_i^x\,\alpha^z_i\,du \\
53 \mathrm{Cov}[\Delta z_a, \Delta z_b] &=& \rho^{zz}_{ab} \int_s^t \alpha^z_a\,\alpha^z_b\,du
54 \f}
55
56 Proceeding similarly with the foreign exchange rate processes
57 \f[
58 dx_i / x_i = \mu^x_i \, dt +\sigma_i^x\,dW^x_i,
59 \f]
60 we get the following log-moves by integration
61
62 \f{eqnarray*}{
63 \Delta \ln x_i &=& \ln \left( \frac{P^n_0(0,s)}{P^n_0(0,t)} \frac{P^n_i(0,t)}{P^n_i(0,s)}\right) - \frac12 \int_s^t (\sigma^x_i)^2\,du + \rho^{zx}_{0i}\int_s^t H^z_0\, \alpha^z_0\, \sigma^x_i \,du\nonumber\\
64 &&+\int_s^t \zeta^z_0\,H^z_0\, (H^z_0)^{\prime}\,du-\int_s^t \zeta^z_i\,H^z_i\, (H^z_i)^{\prime}\,du\nonumber\\
65 &&+ \int_s^t \left(H^z_0(t)-H^z_0\right)\alpha_0^z\,dW^z_0+ \left(H^z_0(t)-H^z_0(s)\right) z_0(s) \nonumber\\
66 &&- \int_s^t \left(H^z_i(t)-H^z_i\right)\alpha_i^z\,dW^z_i -\left(H^z_i(t)-H^z_i(s)\right)z_i(s) \nonumber\\
67 &&- \int_s^t \left(H^z_i(t)-H^z_i\right)\gamma_i\,du + \int_s^t\sigma^x_i dW^x_i \nonumber
68 \f}
69
70 Integration by parts yields
71
72 \f{eqnarray*}{
73 && \int_s^t \zeta^z_0\,H^z_0\, (H^z_0)^{\prime}\,du-\int_s^t \zeta^z_i\,H^z_i\, (H^z_i)^{\prime}\,du\\
74 && = \frac12 \left((H^z_0(t))^2 \zeta^z_0(t) - (H^z_0(s))^2 \zeta^z_0(s)- \int_s^t (H^z_0)^2 (\alpha^z_0)^2\,du\right)\nonumber\\
75 &&\qquad {}- \frac12 \left((H^z_i(t))^2 \zeta^z_i(t) - (H^z_i(s))^2 \zeta^z_i(s)-\int_s^t (H^z_i)^2 (\alpha^z_i)^2\,du \right)
76 \f}
77
78 so that the expectation is
79 \f{eqnarray}{
80 \mathbb{E}[\Delta \ln x_i] &=& \ln \left( \frac{P^n_0(0,s)}{P^n_0(0,t)} \frac{P^n_i(0,t)}{P^n_i(0,s)}\right) - \frac12 \int_s^t (\sigma^x_i)^2\,du + \rho^{zx}_{0i} \int_s^t H^z_0\, \alpha^z_0\, \sigma^x_i\,du\nonumber\\
81 &&+\frac12 \left((H^z_0(t))^2 \zeta^z_0(t) - (H^z_0(s))^2 \zeta^z_0(s)- \int_s^t (H^z_0)^2 (\alpha^z_0)^2\,du\right)\nonumber\\
82 &&-\frac12 \left((H^z_i(t))^2 \zeta^z_i(t) - (H^z_i(s))^2 \zeta^z_i(s)-\int_s^t (H^z_i)^2 (\alpha^z_i)^2\,du \right)\nonumber\\
83 &&+ \left(H^z_0(t)-H^z_0(s)\right) z_0(s) -\left(H^z_i(t)-H^z_i(s)\right)z_i(s)\nonumber\\
84 && - \int_s^t \left(H^z_i(t)-H^z_i\right)\gamma_i \,du, \label{eq:meanX}
85 \f}
86
87 and IR-FX and FX-FX covariances are
88
89 \f{eqnarray}{
90 \mathrm{Cov}[\Delta \ln x_a, \Delta \ln x_b] &=& \int_s^t \left(H^z_0(t)-H^z_0\right)^2 (\alpha_0^z)^2\,du \nonumber\\
91 &&- \rho^{zz}_{0b}\int_s^t \left(H^z_0(t)-H^z_0\right)\alpha_0^z \left(H^z_b(t)-H^z_b\right)\alpha_b^z\,du \nonumber\\
92 &&+ \rho^{zx}_{0b}\int_s^t \left(H^z_0(t)-H^z_0\right)\alpha_0^z \sigma^x_b\,du \nonumber\\
93 && -\rho^{zz}_{0a} \int_s^t \left(H^z_a(t)-H^z_a\right) \alpha_a^z\left(H^z_0(t)-H^z_0\right) \alpha_0^z\,du \nonumber\\
94 &&+ \rho^{zz}_{ab}\int_s^t \left(H^z_a(t)-H^z_a\right)\alpha_a^z \left(H^z_b(t)-H^z_b\right)\alpha_b^z\,du \nonumber\\
95 &&- \rho^{zx}_{ab}\int_s^t \left(H^z_a(t)-H^z_a\right)\alpha_a^z \sigma^x_b,du\nonumber\\
96 &&+ \rho^{zx}_{0a}\int_s^t \left(H^z_0(t)-H^z_0\right)\alpha_0^z\,\sigma^x_a\,du \nonumber\\
97 &&- \rho^{zx}_{ba}\int_s^t \left(H^z_b(t)-H^z_b\right)\alpha_b^z\,\sigma^x_a\, du \nonumber\\
98 &&+ \rho^{xx}_{ab}\int_s^t\sigma^x_a\,\sigma^x_b \,du \label{eq:covXX}\\
99 &&\nonumber\\
100 \mathrm{Cov} [\Delta z_a, \Delta \ln x_b]) &=& \rho^{zz}_{0a}\int_s^t \left(H^z_0(t)-H^z_0\right) \alpha^z_0\,\alpha^z_a\,du \nonumber\\
101 &&- \rho^{zz}_{ab}\int_s^t \alpha^z_a \left(H^z_b(t)-H^z_b\right) \alpha^z_b \,du \nonumber\\
102 &&+\rho^{zx}_{ab}\int_s^t \alpha^z_a \, \sigma^x_b \,du. \label{eq:covZX}
103 \f}
104
105 Based on these expectations of factor moves and log-moves, respectively, we can work out the
106 conditonal expectations of the factor levels at time \f$t\f$. These expectations have state-dependent
107 parts (levels at time \f$s\f$) and state-independent parts which we separate in the implementation,
108 see functions ending with "_1" and "_2", respectively.
109 Moreover, the implementation splits up the integrals further in order to separate simple and more
110 complex integrations and to allow for tailored efficient numerical integration schemes.
111
112 In the following we rearrange the expectations and covariances above such that the expressions
113 correspond 1:1 to their implementations below.
114
115 \todo Rearrange integrals to achieve 1:1 correspondence with code
116*/
117namespace CrossAssetAnalytics{}
118
119/*! Cross asset model
120
121 Reference:
122
123 Lichters, Stamm, Gallagher: Modern Derivatives Pricing and Credit Exposure
124 Analysis, Palgrave Macmillan, 2015
125
126 The model is operated under the domestic LGM measure. There are two ways of
127 calibrating the model:
128
129 - provide an already calibrated parametrization for a component
130 extracted from some external model
131 - do the calibration within the CrossAssetModel using one
132 of the calibration procedures
133
134 The inter-parametrization correlation matrix specified here can not be
135 calibrated currently, but is a fixed, external input.
136
137 The model does not own a reference date, the times given in the
138 parametrizations are absolute and insensitive to shifts in the global
139 evaluation date. The termstructures are required to be consistent with
140 these times, i.e. should all have the same reference date and day counter.
141 The model does not observe anything, so its update() method must be
142 explicitly called to notify observers of changes in the constituting
143 parametrizations, update these parametrizations and flushing the cache
144 of the state process. The model ensures these updates during
145 calibration though.
146
147 The cross asset model for \f$n\f$ currencies is specified by the following SDE
148
149 \f{eqnarray*}{
150 dz_0(t) &=& \alpha^z_0(t)\,dW^z_0(t) \\
151 dz_i(t) &=& \gamma_i(t)\,dt + \alpha^z_i(t)\,dW^z_i(t), \qquad i = 1,\dots, n-1 \\
152 dx_i(t) / x_i(t) &=& \mu^x_i(t)\, dt +\sigma_i^x(t)\,dW^x_i(t), \qquad i=1, \dots, n-1 \\
153 dW^a_i\,dW^b_j &=& \rho^{ab}_{ij}\,dt, \qquad a, b \in \{z, x\}
154 \f}
155 Factors \f$z_i\f$ drive the LGM interest rate processes (index \f$i=0\f$ denotes the domestic currency),
156 and factors \f$x_i\f$ the foreign exchange rate processes.
157
158 The no-arbitrage drift terms are
159 \f{eqnarray*}
160 \gamma_i &=& -H^z_i\,(\alpha^z_i)^2 + H^z_0\,\alpha^z_0\,\alpha^z_i\,\rho^{zz}_{0i} - \sigma_i^x\,\alpha^z_i\, \rho^{zx}_{ii}\\
161 \mu^x_i &=& r_0-r_i +H^z_0\,\alpha^z_0\,\sigma^x_i\,\rho^{zx}_{0i}
162 \f}
163 where we have dropped time-dependencies to lighten notation.
164
165 The short rate \f$r_i(t)\f$ in currency \f$i\f$ is connected with the instantaneous forward curve \f$f_i(0,t)\f$
166 and model parameters \f$H_i(t)\f$ and \f$\alpha_i(t)\f$ via
167 \f{eqnarray*}{
168 r_i(t) &=& f_i(0,t) + z_i(t)\,H'_i(t) + \zeta_i(t)\,H_i(t)\,H'_i(t), \quad \zeta_i(t) = \int_0^t \alpha_i^2(s)\,ds \\ \\
169 \f}
170
171 Parameters \f$H_i(t)\f$ and \f$\alpha_i(t)\f$ (or alternatively \f$\zeta_i(t)\f$) are LGM model parameters
172 which determine, together with the stochastic factor \f$z_i(t)\f$, the evolution of numeraire and
173 zero bond prices in the LGM model:
174 \f{eqnarray*}{
175 N(t) &=& \frac{1}{P(0,t)}\exp\left\{H_t\, z_t + \frac{1}{2}H^2_t\,\zeta_t \right\} \\
176 P(t,T,z_t) &=& \frac{P(0,T)}{P(0,t)}\:\exp\left\{ -(H_T-H_t)\,z_t - \frac{1}{2} \left(H^2_T-H^2_t\right)\,\zeta_t\right\}.
177 \f}
178
179*/
180namespace CrossAssetModelTypes{}
181
182/*!
183*/
184namespace tag{}
185
186}