
Open Source Risk Engine
Design

Acadia Inc.

January 15, 2024

1

Document History

Date Author Comment
14 November 2019 Roland Lichters initial release
4 December 2021 Roland Kapl enhancements and new developments of 1.6

2

Contents
1 Introduction 4

2 Overview 5

3 QuantExt 9

4 Data 12
4.1 Market Data . 12
4.2 Portfolio and CSA Data . 14
4.3 Pricing Engines, Engine Factory . 16
4.4 Pricing Models and Simulation Models 16

5 Analytics 17
5.1 Simulation Market . 17
5.2 Scenario Generation . 19
5.3 Engine . 19
5.4 Aggregation, Cubes, XVA and Post Process 20
5.5 Orchestration, ORE App . 22

6 Unit Tests 23

7 Language Bindings 24

3

1 Introduction
Open Source Risk Engine (ORE, https://opensourcerisk.org) was first released by
Quaternion (https://www.quaternion.com) as free/open-source software in 2016,
with six subsequent releases to date, the latest version as of July 2021.

The Open Source Risk project aims at establishing a transparent peer-reviewed
framework for pricing and risk analysis that serves as

• a benchmarking, validation, training, teaching reference

• an extensible foundation for tailored risk solutions.

ORE’s analytics cover

• Financial instrument valuation for a range of derivatives products and bonds
across six risk classes - interest rates, foreign exchange, inflation, equity, credit
and commodity

• market risk analysis, sensitivity analysis, stress testing, Value at Risk

• credit exposure simulation

• CSA pricing and XVA calculation

ORE is based on QuantLib (https://quantlib.org), the “free/open-source library for
quantitative finance”, which in turn depends on the Boost C++ libraries
(https://boost.org). The QuantLib project had its initial release in December 2000,
and it has grown over almost two decades to about 420 thousand lines of code, driven
by a small number of “authors” and larger number of “contributors”, including a
number of Quaternion staff.

QuantLib provides the “infrastructure” of a fundamental class hierarchy covering dates
and date arithmetic, calendars, schedules and schedule generation from rules,
yield/inflation/default term structures and bootstrap methods, Financial instruments,
models and model calibration, pricing engines, various pricing method templates
(analytical, Monte Carlo simulation, finite difference), and a range of underlying
mathematical utilities including solvers, optimizers, interpolators etc.

ORE extends QuantLib, adding to QuantLib’s class hierarchy what we have
experienced as missing ingredients in our history as QuantLib users over the past 15
years. Moreover, and in contrast to QuantLib, ORE provides a risk application that is
designed to be accessible to end users, providing

• a simple command-line application with input/output files

• transparent interfaces for trade data, market data, system configuration

• a detailed user guide with a large range of examples of ORE usage, see
https://opensourcerisk.org/documentation

The purpose of this document is describing the layout and technical design of ORE, as
well as its connection with QuantLib.

4

https://opensourcerisk.org
https://www.quaternion.com
https://quantlib.org
https://boost.org
https://opensourcerisk.org/documentation

2 Overview
Like QuantLib, ORE is written in C++, and it is organized in a hierarchy of C++
libraries an application needs to be linked with, as indicated in figure 1.

Figure 1: Hierarchy of ORE libraries.

The dark blue parts of indicate components of ORE, dependencies are indicated in
light blue color.

QuantExt - Collection of QuantLib Extensions

Extensions to QuantLib such as financial instruments, pricing models, pricing engines
and term structures are collected in the QuantExt library. The internal organization of
QuantExt (folder structure, class hierarchy) mimics the structure of QuantLib, so that
a developer who is familiar with QuantLib will have little difficulty finding her/his way
around QuantExt as well.

At an early stage of the Open Source Risk project we decided to keep these kind of
extensions separate from QuantLib (rather than adding to a local copy of the
QuantLib library or immediately contributing these changes to the QuantLib project).
This facilitates QuantLib release changes, swapping QuantLib in ORE for
another/newer version of QuantLib.

Similarly, rather than patching a copy of QuantLib locally when identifying a bug or
issue, we tend to copy the affected QuantLib class or part of the QuantLib class
hierarchy to QuantExt and apply the correction in QuantExt. In doing so, we decouple
from the QuantLib release cycle and bug fixes and facilitate quick fixes of parts of
QuantLib that ORE critically depends on.

Some of the extensions that go into QuantExt may be contributed back into QuantLib
with a delay, and then removed from QuantExt again. Examples are cross currency
instruments and related engines and bootstrap helpers. Other extensions that are more
relevant for the risk analytics in ORE may stay in QuantExt longer term, such as the
cross asset model underlying the Monte Carlo scenario generation for exposure
simulation and xVA in ORE.

QuantLib’s focus is on the individual instrument and its valuation and analysis
whereas ORE aims at portfolio analytics that may be more than simply additive in the
instrument’s contributions (such as xVA, Value at Risk, etc). QuantExt provides

5

models and methods to support these analytics so that we might see QuantExt
existing in parallel to QuantLib in the longer term.

OREData - Data Management, Translation and Assembly

OREData is a library beyond the scope of QuantLib and QuantExt. OREData serves
at the high level two purposes summarized under the label of “data management”

• to translate between external (XML) representations of financial objects and
internal (C++) representations of objects in memory that QuantLib and
QuantExt can deal with

• to assemble essential object hierarchies underneath the abstract

– Portfolio object containing pointers to all financial products “loaded”

– Market objects containing bootstrapped curves and volatility surfaces of
all kinds) with the help of various kinds of configuration and convention
objects

– Model objects used for market simulation or instrument pricing all with
the help of a range of lower level utilities and factories. The functionality
in OREData with QuantLib/QuantExt underneath is sufficient to build a
market and bootstrap curves, load a portfolio from XML, calculate present
values and project cash flows.

The key Portfolio, Market and Model objects are in turn used by the higher level
analytics described in the next paragraph.

Furthermore, OREData provides supporting classes for reporting (see folder
OREData/ored/report) and various utility classes for building the above mentioned
objects, logging, screen output and serialization (see folder OREData/ored/utility).

OREAnalytics - Portfolio Risk Analytics

OREAnalytics is a library that comprises the classes for portfolio risk analytics, in
particular Monte Carlo simulation-based analytics. It was originally designed to
support exposure simulation and XVA, but also covers hypothetical scenario analysis
(sensitivities, stress testing). The classes in OREAnalytics take the objects assembled
in OREData (Portfolio, Market, Model) as an input. Key objects in OREAnalytics are
then

• SimMarket and derived classes, all derived in turn from the Market base class
in OREData: allows changing market points and updates of term structures after
market moves

• ScenarioGenerator classes of several kinds (LGM, cross asset model,
sensitivity, stress test): these generate Monte Carlo or hypothetical market
scenarios (stored in Scenario objects); the scenarios in turn can be “applied” to
the ScenarioSimMarket, and a Portfolio linked to the latter market then reacts to
the market changes when repriced

• NPVCube: interface to stored portfolio NPVs or sensitivities

6

• ValuationEngine: builds an NPV cube given Portfolio, SimMarket, simulation
DateGrid; builds a sensitivity cube

• PostProcess: Performs NPV cube aggregation, evaluates the collateral account
evolution, computes exposure statistics and XVAs; key inputs into PostProcess
are the Portfolio, NettingSet data, today’s market, the NPV cube generated by
ValuationEngine

• OREApp: Orchestrates the information flow from portfolio and market data
loading to various analytics and reporting, supports e.g. a batch type work flow
for ORE as illustrated in figure 2.

Portfolio Loading
“Curve” Building
Model Calibration

t0 Pricing
Market Simulation

Forward Pricing

Aggregation
Collateral Modeling
Exposure Analytics

Trade data (xml) NPV Report
Cashflow Report

Exposure Reports
XVA Reports

NPV Cube Net NPV Cube
Market data

Configuration (xml)

Interactive Visualisation:
Evolution of Exposure and NPV distributions

Input
Output

Processing

Figure 2: Information flow implemented in ORE App.

Applications

ORE comes with a command line application that wraps the OREApp class in
OREAnalytics, with the following minimal main function.

int main(int argc, char** argv) {
// ...
if (argc != 2) {

std::cout << endl << "usage: ORE path/to/ore.xml" << endl << endl;
return -1;

}
string inputFile(argv[1]);
boost::shared_ptr<Parameters> params = boost::make_shared<Parameters>();
try {

params->fromFile(inputFile);
OREApp ore(params);
return ore.run();

} catch (const exception& e) {
cout << endl << "an error occured: " << e.what() << endl;
return -1;

}
}

7

The ORE User Guide at https://opensourcerisk.org/documentation discusses the
usage of the ORE command line application in detail, the main ore.xml input file
passed to the application and the various inputs referenced therein.

Unit Tests

All three libraries - QuantExt, OREData and OREAnalytics - are covered by unit test
suites, again following the example of QuantLib. In total the test suites currently
comprise about 430 test cases while the ORE C++ code base size is about 185
thousands source lines of code. This should be compared to QuantLib with about 775
test cases and a code base size of 420 thousand lines, which indicates a code coverage
in ORE that exceeds the coverage in QuantLib.

Language Bindings

To open ORE up and make its components accessible from other programming
languages such as Python and Java, we pursue the same approach as QuantLib and
provide (a framework of) language bindings using SWIG, the Simple Wrapper
Interface Generator (http://swig.org).

Figure 3: SWIG wrapper.

The ORE SWIG bindings are open source as well and provided in a separate repository
https://github.com/opensourcerisk/ore-swig). This project provides language
bindings for QuantLib, QuantExt, OREData and OREAnalytics as illustrated in figure
3. This allows, for example, running the ORE process that is encapsulated in the C++
call ore.run() in Python, but also also allows querying members of the OREApp
object in Python or calling into lower level OREData, QuantLib or QuantExt objects
in Python. Refer to the examples in the ORE-SWIG project.

8

https://opensourcerisk.org/documentation
http://swig.org
https://github.com/opensourcerisk/ore-swig

3 QuantExt
QuantExt collects ORE’s extensions to QuantLib such as financial instruments, pricing
models, pricing engines and term structures, to achieve the product coverage across six
asset classes ORE is aiming for. The internal organization of QuantExt (folder
structure, class hierarchy) mimics the structure of QuantLib, so that a developer who
is familiar with QuantLib will have little difficulty finding her/his way around
QuantExt as well. Moreover we follow closely the design of QuantLib since

• QuantLib’s design is based on decades of quant developer experience and well
tested in practice over the past 20 years

• we want to keep the option open that QuantExt code is migrated in part or
entirely into QuantLib in the future

We do not elaborate on the QuantLib/QuantExt design and patterns, or the range of
basic QuantLib objects here as this has been well covered by Luigi Ballabio, one of
QuantLib’s creators, in his reference book “Implementing QuantLib - Quantitative
finance in C++: an inside look at the architecture of the QuantLib library”
(https://leanpub.com/implementingquantlib) with free drafts available in his blog
posts on https://www.implementingquantlib.com. In the following we sketch the
current scope of the QuantLib extensions in QuantExt, as of the time of writing this
text (November 2019). This concrete list is continuously growing and will be out of
date at the time of the next release, i.e. check the on-line documentation at
https://www.opensourcerisk.org/docs/qle/index.html for an up-to-date picture.

• Calendars: Chile, Colombia, France, Israel, Malaysia, Netherlands, Peru,
Philippines, Switzerland, Thailand

• Cashflows: Average overnight indexed coupon and pricer, BRL CDI coupon
pricer, Equity coupon and pricer, floating annuity coupon and pricer, FX linked
notional coupon and cashflow, log-normal CMS spread pricer, Quanto coupon
pricer, stripped capped/floored YOY inflation coupon, sub-period coupon and
pricer

• Currencies: Africa (TND, EGP, NGN, MAD), America (MXV, CLF), Asia
(KZT, QAR, BHD, OMR, AED, PHP, CNH), Precious Metals (XAU, XAG,
XPT, XPD)

• Indexes: Bond index, Commodity index, Equity index, FX index, Inflation
indices (CA CPI, Danish CPI, Swedish CPI), and a range of 40 IBOR indices
connected with the additional currencies above

• Instruments: 24 instrument classes - Average OIS, BRL CDI Swap, CDS
Option, Commodity Forward, Credit Default Swap, Cross Currency Basis MTM
Reset Swap, Cross Currency Basis Swap, Cross Currency Fixed/Float Swap,
Cross Currency Swap, Currency Swap, Deposit, Equity Forward, Fixed BMA
Swap, Forward Bond, FX Forward, Implied Bond Spread Helper, OIS Basis
Swap, Overnight Indexed Cross Currency Basis Swap, Sub Periods Swap, Tenor
Basis Swap

• Math: Delta Gamma VaR, Nadaraya Watson Regression, Stabilized General
Linear Least Squares Fit

9

https://leanpub.com/implementingquantlib
https://www.implementingquantlib.com
https://www.opensourcerisk.org/docs/qle/index.html

• Monte Carlo Methods: Multi Path Generator

• Models: 32 model and model parameterization helper classes - Linear Gauss
Markov Model (LGM), Cross Asset Model, Cross Asset Analytics, Cross Asset
Model Parametrization (EQ BS Constant / Piecewise Constant, FX BS
Constant/ Piecewise Constant, IR LGM1F Constant / Piecewise Linear /
Constant HullWhite, INF DK, CR LGM1F),Calibration Helpers (CMS Cap, CPI
Cap/Floor, CDS Option, FX/EQ Option), Model Implied Termstructures (DK
Zero Inflation, DK YOY Inflation, LGM Credit, LGM Yield), Linkable
Calibrated Model

• Pricing Engines: 24 pricing engines covering the additional instruments above
- Analytic Cross Currency LGM FX Option, Analytic DK CPI Cap/Floor,
Analytic LGM CDS Option, Analytic LGM Swaption, Analytic Cross Asset
LGM Equity Option, Barone Adesi Whaley, Black CDS Option, CPI Bachelier
Cap/Floor, CPI Black Cap/Floor, Cross Currency Swap, Deposit, Commodity
Forward, Currency Swap, Equity Forward, FX Forward, Risky Bond, Swap
Delta, Swap Multi Curve, LGM Convolution Solver, Midpoint CDS, Numeric
LGM Swaption, Overnight Index Cross Currency Basis Swap

• Processes: Cross Asset State Process, IR LGM1F State Process

• Quotes: Log Quote

• Term Structures: 80 term structures and helper classes supporting the pricing
across six asset classes -

– Bootstrap Helpers: Average OIS Rate Helper, Basis Two Swap Helper,
BRL CDI Rate Helper, Cap/Floor Helper, Cross Currency Basis MTM
Reset Swap Helper, Cross Currency Basis Swap Helper, Cross Currency
Fix/Float Swap Helper, IMM FRA Rate Helper, Dated Stripped Optionlet
and Adapter, Default Probability Helpers, Equity Forward Curve Stripper,
Overnight Index Basis Swap / Cross Currency Basis Swap, Sub-Periods
Swap, Tenor Basis Swap

– Black Volatility Term Structures: Inverted Vol, Monotone Variance,
Variance Moneyness, Surface with Delta, Surface with ATM, Sparse Surface,

– Dynamic Termstructures: Black Vol Termstructure, Optionlet Vol
Termstructure, Swaption Vol Matrix, YOY Optionlet Vol Termstructure

– Spreaded Termstructures: Spreaded Optionlet Volatility, Spreaded
Smile Section, Spreaded Swaption Volatility, Equity Vol Constant Spread,
Hazard Spreaded Default Termstructure

– FX: Black Vol Surface, Smile Section, Vanna Volga Smile Section

– Inflation: Stripped CPI Volatility Structure, Stripped YOY Inflation
Optionlet Volatility, YOY Inflation Optionlet Stripper, YOY Optionlet
Volatility Surface, corrections of QuantLib’s
“KInterpolatedYoYOptionletVolatilitySurface”

– Correlation: Correlation Termstructure, Flat Correlation Termstructure

10

– Others: Cap/Floor Term Vol Curve, Cap/Floor Term Vol Surface, Cross
Currency Price Termstructure, Discount Ratio Modified Curves, Price Term
Structure and Adapter, Extension of QuantLib’s Iterative Bootstrap,
corrections and extensions to QuantLib’s Optionlet Stripper

• Time: Year Counter, Futures Expiry Calculator

The current size of the QuantExt code base is about 77 thousand source lines
(excluding blank lines), of 185 thousand lines in total across the three libraries in ORE.

11

4 Data
The Data management library OREData, as stated above, hosts the classes for

• translating external trade, market and configuration data into financial objects
that QuantExt and QuantLib can deal with, and

• assembling these into object hierarchies the higher level analytics can use
conveniently (e.g. Portfolio, Market, Pricing Models, Simulation Models)

The OREData library currently comprises about 78 thousand lines of code, close to
the size of QuantExt.

We start illustrating OREData’s design by focusing on the Market objects.

4.1 Market Data

The market base class provides the interface to all kinds of term structure objects that
might be needed in pricing across asset classes. Listing 1 shows a small excerpt, all
member functions are pure virtual and are implemented in derived classes. It is then
sufficient to pass a smart pointer respectively Handle to a base Market object into
classes or functions that need to perform pricing. Relevant term structures, indices and
quotes are queried by providing a single unique key or set of keys.

The Market interface covers

• Yield term structures by type and name, as shown in listing 1

• Swaption volatility structures by currency

• Discount curves by currency

• IBOR and Swap indices (with associated forward curves) by index name

• FX Spot quotes by currency pair

• FX volatility term structures by currency pair

• Default term structures by name

• Recovery rate quotes by name

• CDS volatility term structures by name

• Base correlation term structures by qualifier

• Zero and Year-on-Year inflation indices (with associated forward curves) by index
name

• Cap/Floor volatility structures by currency

• Year on year Cap/Floor volatility and price surfaces by index name

• Zero inflation Cap/Floor volatility and price surfaces by index name

• Equity spot prices, dividend and forecasting curves by equity name

• Equity volatility term structures by equity name

• Security spreads by security ID

12

• Commodity price curves by commodity name

• Commodity volatility term structures by commodity name

• Generic correlation term structures by index pair

• Prepayment rate quotes by security ID

Listing 1: Market base class, pure virtual member functions with varying number and type
of keys and common last argument indicating the “curve ID” to select one of several market
configurations.

class Market {
public:
virtual ~Market() {}
virtual Date asofDate() const = 0;
//! \name Yield Curves
//@{
virtual Handle<YieldTermStructure>
discountCurve(const string& ccy,
const string& configuration = Market::defaultConfiguration) const = 0;
virtual Handle<IborIndex>
iborIndex(const string& indexName,
const string& configuration = Market::defaultConfiguration) const = 0;
virtual Handle<SwapIndex>
swapIndex(const string& indexName,
const string& configuration = Market::defaultConfiguration) const = 0;
//@}
//! \name Swaptions
//@{
virtual Handle<SwaptionVolatilityStructure>
swaptionVol(const string& ccy,
const string& configuration = Market::defaultConfiguration) const = 0;
// ...
//@}
//! \name Foreign Exchange
// ...
};

The MarketImpl class is derived from Market, and it essentially provides member
variables (maps) to store the underlying term structures, indices and quotes. The
TodaysMarket class is derived from MarketImpl, and it provides a constructor that
builds a concrete Market instance. This build process involves various helper classes
for each term structure across the asset classes, see folder OREData/ored/marketdata,
as well as configuration helpers for each term structure in folder
OREData/ored/configuration. Moreover, the build process involves

• reading market data in csv files and term structure configurations data XML files
into internal data classes, and

• parsing/translating text into basic QuantLib/QuantExt objects such as
Calendars, Periods, Currencies, Quotes etc., all supported by the utility code
assembled in folder OREData/ored/utilities.

The TodaysMarket class is sufficient for portfolio pricing. Further derived classes that
are essential for market simulation and scenario analysis are introduced in the next

13

section on OREAnalytics.

4.2 Portfolio and CSA Data

Listing 2: Excerpt of the Portfolio class showing essential member functions.

class Portfolio {
public:
//! Get a Trade with the given trade id from the portfolio
boost::shared_ptr<Trade> get(const std::string& id) const;
//! Load using a default or user supplied TradeFactory
void load(const std::string& fileName,
const boost::shared_ptr<TradeFactory>& tf = boost::make_shared<TradeFactory>());
//! Load from an XML string using a default or user supplied TradeFactory
void loadFromXMLString(const std::string& xmlString,
const boost::shared_ptr<TradeFactory>& tf
= boost::make_shared<TradeFactory>());
//! Load from XML Node
void fromXML(XMLNode* node,
const boost::shared_ptr<TradeFactory>& tf
= boost::make_shared<TradeFactory>());
//! Save portfolio to an XML file
void save(const std::string& fileName) const;
//! Call build on all trades in the portfolio
void build(const boost::shared_ptr<EngineFactory>&);
//! Return trade list
const std::vector<boost::shared_ptr<Trade>>& trades() const { return trades_; }
// ...
};

The second large part of OREData deals with trade loading and building from external
sources and assembling all trades in a Portfolio object. An excerpt is shown in listing
2. The Portfolio class provides several ways of loading a portfolio (from an XML file,
an XML string, a single XML node), to store a portfolio to XML file, to access
individual trades. When a portfolio is loaded from an external source, it is first
represented in internal trade objects where all relevant fields are native (string, integer,
double, bool) variables or standard C++ containers like vectors or maps.

In a subsequent step, initiated by a call to the build member function, the “raw” trade
data is then translated into QuantLib/QuantExt objects up to the
QuantLib/QuantExt instrument, linked to a QuantLib/QuantExt pricing engine, in
turn linked to the relevant term structures provided by the Market class introduced in
Section 4.1. The role of the TradeFactory class in the Portfolio member functions is
to help constructing concrete instances of trade objects depending on the TradeType
information in the trade XML representation. All trade objects derive from a common
Trade base class shown in listing 3.

14

Listing 3: Excerpt of the Trade class showing essential member functions.

class Trade {
public:
class Trade : public XMLSerializable {
public:
// Constructor
//
//! Build QuantLib/QuantExt instrument, link pricing engine
virtual void build(const boost::shared_ptr<EngineFactory>&) = 0;
//! Return fixings that are relevant for pricing
virtual std::map<std::string, std::set<QuantLib::Date>>
fixings(const QuantLib::Date& settlementDate = QuantLib::Date()) const = 0;
//! \name Serialisation
//@{
virtual void fromXML(XMLNode* node);
virtual XMLNode* toXML(XMLDocument& doc);
//@}
//! \name Inspectors
//@{
const string& id() const { return id_; }
const string& tradeType() const { return tradeType_; }
const Envelope& envelope() const { return envelope_; }
const set<string>& portfolioIds() const { return envelope().portfolioIds(); }
const TradeActions& tradeActions() const { return tradeActions_; }
const boost::shared_ptr<InstrumentWrapper>& instrument() { return instrument_; }
const std::vector<QuantLib::Leg>& legs() { return legs_; }
const std::vector<string>& legCurrencies() { return legCurrencies_; }
const std::vector<bool>& legPayers() { return legPayers_; }
const string& npvCurrency() { return npvCurrency_; }
const Date& maturity() { return maturity_; }
//@}
//...
};

The Trade class provides access to the underlying QuantLib/QuantExt instrument and
further trade information that is meaningful across all kinds of products. There is a
range of concrete classes derived from Trade that perform the actual load and build
process, see folder OREData/ored/portfolio, currently

• Bond

• Cap/Floor

• Commodity Forward, European Commodity Option

• Credit Default Swap

• Equity Forward, Equity Swap, European Equity Option

• Forward Bond

• Forward Rate Agreement

• FX Forward, FX Swap, European and American FX Option

• Swap

15

• European and Bermudan Swaption

The trade design is modular, and objects re-used within various trade types as member
variables are

• Envelope

• Schedule

• OptionData

• LegData

• TradeActions

each of which comes with functions for loading from XML, building
QuantLib/QuantExt objects.

CSA Data is represented in a single class, NettingSetDefinition, see folder
OREData/ored/portfolio, also XML serializable like each trade. The “portfolio” of
CSAs is then managed by class NettingSetManager, XML serializable like the
Portfolio object.

4.3 Pricing Engines, Engine Factory

Each trade is linked with a pricing engine during the trade’s build process. In order to
limit the number of engines to be constructed (and to limit memory usage), ORE
reuses engines as far as possible. This is achieved by the EngineBuilder,
EngineFactory and LegBuilder classes. Currently, ORE provides 36 concrete
“default” engine and leg builders when the EngineFacotry is constructed. The design
here is extensible so that a developer can add his/her own engine builders to the
factory when extending ORE. For this purpose the EngineFactory class provides the
addExtraBuilders member function.

Figure 4 shows the relationships of these classes:

4.4 Pricing Models and Simulation Models

The construction and calibration of Pricing and Simulation models is encapsulated in
the LgmBuilder and CrossAssetModelBuilder classes, see folder
OREData/ored/models. Both are supported by associated “data” classes that hold the
model/calibration configuration, XML serializable like portfolio and other
configuration data in ORE.

16

Figure 4: Collaboration Diagram of Instrument/Leg Builder and Factory Classes

5 Analytics
The OREAnalytics library comprises the classes for portfolio risk analytics, in
particular Monte Carlo simulation-based analytics. It was originally designed to
support exposure simulation and XVA, but also covers hypothetical scenario analysis
(sensitivities, stress testing). The classes in OREAnalytics depend on QuantLib,
QuantExt and OREData, and the primary inputs into analytics are the Portfolio,
Market and CrossAssetModel objects introduced in section 4.1 The OREAnalytics
library currently comprises about 30 thousand lines of code.

5.1 Simulation Market

The TodaysMarket class in OREData provides a snapshot of the market as of a given
reference date. The Portfolio is linked to this market to produce the reference date’s
valuations and cash flow projections. ORE’s design to support analysis of how
valuations change when the market moves under hypothetical scenarios with fixed
reference date or under market changes through time is to “simply” link the portfolio
to a market that change in these ways and then triggers repricing. The key element for
the implementation is the SimMarket class, derived from the MarketImpl (which is
derived form Market), i.e. it provides the same interfaces, and some additional and
essential member functions, in particular the update function, as shown in listing 4,
see folder OREAnalytics/orea/simulation.

17

Listing 4: Simulation Market base class.

class SimMarket : public data::MarketImpl {
public:
SimMarket(const Conventions& conventions) : MarketImpl(conventions), numeraire_(1.0) {}
//! Generate or retrieve market scenario, update market, notify termstructures and update fixings
virtual void update(const Date&) = 0;
//! Return current numeraire value
Real numeraire() { return numeraire_; }
//! Reset sim market to initial state
virtual void reset() = 0;
//! Get the fixing manager
virtual const boost::shared_ptr<FixingManager>& fixingManager() const = 0;
protected:
Real numeraire_;
};

The concrete class that derives from SimMarket and that actually implements update,
reset and fixingManager is ScenarioSimMarket, as shown in listing 5, see folder
OREAnalytics/orea/scenario.

Listing 5: Excerpt of the concrete Simulation Market class.

//! Simulation Market updated with discrete scenarios
class ScenarioSimMarket : public analytics::SimMarket {
public:
//! Constructors
// ...
//! Set scenario generator
boost::shared_ptr<ScenarioGenerator>& scenarioGenerator() { return scenarioGenerator_; }
//! Set aggregation data
boost::shared_ptr<AggregationScenarioData>& aggregationScenarioData() { return asd_; }
//! Set scenarioFilter
boost::shared_ptr<ScenarioFilter>& filter() { return filter_; }
//! Update market snapshot and relevant fixing history
void update(const Date& d) override;
//! Reset sim market to initial state
virtual void reset() override;
//! Return the fixing manager
const boost::shared_ptr<FixingManager>& fixingManager() const override { return fixingManager_; }
// ...
};

The ScenarioGenerator class that appears here is used to generate single or multiple
market Scenarios. This is used in ScenarioSimMarket’s update function which then
applies the generated scenario to the underlying data in ScenarioSimMarket.
Moreover, the update call triggers QuantLib observer notification chains so that the
portfolio that is linked to ScenarioSimMarket reacts to these changes with amended
valuations when asked for NPVs next time. To finish this section we note that the
configuration for the simulation market’s composition is externally done in ORE XML,
and there is a configuration class ScenarioSimMarketParameters which is XML
(de-)serializable, and used in the construction of the ScenarioSimMarket object.

18

5.2 Scenario Generation

OREAnalytics covers two types of Monte Carlo scenario generators that produce
market evolutions - LgmScenarioGenerator for risk neutral interest rate scenarios only,
CrossAssetModelScenarioGenerator for IR/FX/INF/EQ market scenarios, as well
as sensitivity and stress testing scenario generators SensitivityScenarioGenerator
and stressScenarioGenerator. All generators have associated XML (de-)serializable
configuration classes which are used to construct the generators. The interface between
any scenario generator and the ScenarioSimMarket is the Scenario object shown in
listing 6. Its concrete derived classes hold the actual generated data.

Listing 6: Excerpt of the Scenario data class.

class Scenario {
public:
//! Return the scenario asof date
virtual const Date& asof() const = 0;
//! Get the scenario label
virtual const string& label() const = 0;
//! Set the scenario label
virtual void label(const string&) = 0;
//! Get Numeraire ratio n = N(t) / N(0) so that Price(0) = N(0) * E [Price(t) / N(t)]
virtual Real getNumeraire() const = 0;
//! Set the Numeraire ratio n = N(t) / N(0) so that Price(0) = N(0) * E [Price(t) / N(t)]
virtual void setNumeraire(Real n) = 0;
//! Check whether this scenario provides the data for the given key
virtual bool has(const RiskFactorKey& key) const = 0;
//! Risk factor keys for which this scenario provides data
virtual const std::vector<RiskFactorKey>& keys() const = 0;
//! Add an element to the scenario
virtual void add(const RiskFactorKey& key, Real value) = 0;
//! Get an element from the scenario
virtual Real get(const RiskFactorKey& key) const = 0;
//! clones a scenario and returns a pointer to the new object
virtual boost::shared_ptr<Scenario> clone() const = 0;
// ...
};

The scenario object refers to a unique reference date and contains an arbitrarily large
number of data points that are identified by a RiskFactorKey. The key identifies the
risk factor class (25 types so far in ORE, see the definition in
OREAnalytics/orea/scenario/scenario.hpp, e.g. DiscoutCurve, IndexCurve,
SwaptionVolatility, etc.), a name (e.g. a currency or index name), and an integer
indicating the position of the data item in a vector, matrix or cube. A market
evolution or path is hence represented by a vector of scenarios. So far there is only one
derived class from the base Scenario in ORE, SimpleScenario, which stores the
scenario data in simple vectors and maps, also serializable.

5.3 Engine

The OREAnalytics/orea/engine folder comprises a number of calculators (wrapped
into individual classes) for ORE’s risk analytics beyond single pricing as of the
reference date:

19

• ValuationEngine - performs a market simulation, prices a portfolio under
scenarios, possibly through time, and fills a resulting NPV cube, with the help of
the ValuationCalculator class; the ValuationEngine is used for Monte Carlo
simulations of the market evolution but also the hypothetical scenario analytics
below

• SensitivityAnalysis, also performed with the help of ValuationEngine and
ValuationCalculator: This class wraps functionality to perform a sensitivity
analysis for a given portfolio.

– builds the "simulation" market to which sensitivity scenarios are applied,

– builds the portfolio linked to this simulation market

– generates sensitivity scenarios

– runs the scenario "engine" to apply these and compute the NPV impacts of
all required shifts

– compiles first and second order sensitivities for all factors and all trades

– fills result structures that can be queried

• StressTest, also performed with the help of ValuationEngine and
ValuationCalculator: This class wraps functionality to perform a stress testing
analysis for a given portfolio and

– builds the "simulation" market to which stress scenarios are applied,

– builds the portfolio linked to this simulation market

– generates stress scenarios

– runs the scenario "engine" to apply these and compute the NPV impacts of
all required shifts

– fills result structures that can be queried

– writes stress test report to a file

• ParametricVarCalculator, as post-processor of a SensitivityStream, takes
sensitivity data and a covariance matrix as an input and computes a parametric
value at risk. The output can be broken down by portfolios, risk classes (IR, FX,
EQ, ...) and risk types (delta-gamma, vega, ...)

• CounterpartyCalculator/SurvivalProbabilityCalculator, calculates the survival
probability of a counterpart to be stored in the resulting cube

5.4 Aggregation, Cubes, XVA and Post Process

For the calculation of XVA and exposures, ORE first applies the ValuationEngine
above to build the required cubes (NPV cube on Nettingset level and trade level, Cpty
Cube for survival probabilities), this is done in method buildCube.

The resulting cubes contain NPVs per Trade/Nettingset, future evaluation date and
scenario. The cubes are then passed into the PostProcess class (see folder
OREAnalytics/ore/aggregation).

20

The post processor is an orchestrating class performing following tasks (XML
configurable) for the full portfolio and associated cube:

• compute netting set NPVs as of the reference date and find each netting set’s
maturity

• aggregate NPVs across trades per netting set, construct an NPV cube by netting
set, future valuation date and scenario

• apply ORE’s regression based dynamic initial margin model to project future
Initial Margin per netting set and Monte Carlo path

• generate exposure evolutions per trade (expected positive and negative
exposures, potential future exposures, etc.) without collateral

• generate collateral account balance evolutions per netting set, using CSA details
in each NettingSet object (thresholds, minimum transfer amounts, independent
amounts etc.)

• generate netting set exposure evolutions (after collateral)

• allocate netting set exposures to trade level

• compute XVAs (CVA, DVA, FCA, FBA, MVA, KVA) each netting set

• allocate netting set XVAs to trade level, excluding KVA

The PostProcess class does these tasks with the help of other classes (see folder
OREAnalytics/ore/aggregation):

• ValueAdjustmentCalculator/ StaticCreditXvaCalculator/
DynamicCreditXvaCalculator: ValueAdjustmentCalculator defines an interface
for derived classes to to perform the XVA calculations for all netting sets and
along all paths. StaticCreditXvaCalculator calculates xva using survival
probability from market, DynamicCreditXvaCalculator calculates xva using
survival probability from each path

• RegressionDynamicInitialMarginCalculator/
DynamicInitialMarginCalculator: Dynamic Initial Margin calculation, fills
DIM cube per netting set that can be

– returned to be further analyzed

– used in collateral calculation

– used in MVA calculation

• ExposureCalculator: Trade Exposure and Netting

– Aggregation across scenarios per trade and date. This yields single trade
exposure profiles, EPE and ENE

– Aggregation of NPVs within netting sets per date and scenario. This
prepares the netting set exposure calculation below

• NettedExposureCalculator: Netting set exposure and allocation to trades

21

– Compute all netting set exposure profiles EPE and ENE using collateral if
CSAs are given and active.

– Compute the expected collateral balance for each netting set.

– Allocate each netting set’s exposure profile to the trade level such that the
trade exposures add up to the netting set exposure.

• ExposureAllocator/ RelativeFairValueNetExposureAllocator/
RelativeFairValueGrossExposureAllocator/
RelativeXvaExposureAllocator/ NoneExposureAllocator: calculates
EPE/ENE based on selected AllocationMethod

• CollateralExposureHelper: This class contains helper functions to aid in the
calculation of collateralised exposures. It can be used to calculate margin
requirements in the presence of e.g. thresholds and minimum transfer amounts,
update collateral account details with e.g. new margin call info, and return
collateralised exposures to the user/invoker.

• CollateralAccount: This class holds information corresponding to collateral
cash accounts. It stores a balance as well as an asof date for the balance. The
class also includes "margin" information relating to the most recent margin call
(e.g. call amount, status, expected pay date. The idea is that this class can be
updated on-the-run with new margin requirements and collateral balances, and
the timestamps updated accordingly.

• CVASpreadSensitivityCalculator: Compute hazard rate and CDS spread
sensitivities for a given exposure profile on an externally provided sensitivity grid.

5.5 Orchestration, ORE App

Finally, all analytics described above are orchestrated by a single class OREApp, see
folder OREAnalytics/orea/app. This includes

• loading and building the initial market

• building the engine factory

• loading and building of the portfolio

• generating cash flow, NPV and curve reports

• performing sensitivity analysis

• performing stress tests

• performing parametric VaR calculations

• running the Monte Carlo simulation to build an NPV cube

• performing cube aggregation, post-processing steps

• generating exposure and XVA reports

• generating a dynamic Initial Margin report

22

Which analytics are run and their parameterization is XML configurable, see class
Parameters. Report generation is supported by the ReportWriter class in folder
OREAnalytics/orea/app and the Report class in folder OREData/ored/report.

The Sensitivity Analysis is performed by the class SensitivityRunner.

XVA Analysis can be done in two ways:

In case the XVA simulation should be run in one go, the class XvaRunner can be used:

Listing 7: Usage of the XvaRunner class.

boost::shared_ptr<XvaRunner> xva = getXvaRunner();
xva->runXva(market_, true);
postProcess_ = xva->postProcess();
writeXVAReports();
if (writeDIMReport_)

writeDIMReport();

Otherwise, the simulation can be separated from the XVA calculation:

Listing 8: separate simulation and calculation of XVA.

if (simulate_) {
generateNPVCube();

} else {
LOG("skip simulation");

}

if (xva_) {
// We reset this here because the date grid building below depends on it.
Settings::instance().evaluationDate() = asof_;
// Use pre-generated cube
if (!cube_)

loadCube();
// Use pre-generated scenarios
if (!scenarioData_)

loadScenarioData();
runPostProcessor();
writeXVAReports();
if (writeDIMReport_)

writeDIMReport();
} else {

LOG("skip XVA reports");
}

6 Unit Tests
All three ORE libraries (QuantExt, OREData and OREAnalytics) are covered by
respective unit test suites with source code in folders

• QuantExt/test

• OREData/test

23

• OREAnalytics/test

with currently 132 test cases in QuantExt, 254 test cases in OREData and 43 test
cases in OREAnalytics. Test suites are continuously extended when new functionality
is added or when a bug is identified and fixed.

7 Language Bindings
The ORE language bindings are built following the QuantLib example using SWIG.
The framework provided in the separate repository
https://github.com/opensourcerisk/ore-swig) covers a subset of the ORE classes
and member functions so far. The initial goal of the ORE-SWIG project was to
provide a working framework with focus on Python support that allows access to
classes and functions across all ORE libraries including QuantLib within a single
Python module. This has been achieved with the May 2019 release. We expect that
coverage will be extended over the course of the next releases. Because of the
community’s expressed interest in Python bindings, we expect contributions from the
ORE community over time.

24

https://github.com/opensourcerisk/ore-swig

	Introduction
	Overview
	QuantExt
	Data
	Market Data
	Portfolio and CSA Data
	Pricing Engines, Engine Factory
	Pricing Models and Simulation Models

	Analytics
	Simulation Market
	Scenario Generation
	Engine
	Aggregation, Cubes, XVA and Post Process
	Orchestration, ORE App

	Unit Tests
	Language Bindings

